
AQA 2023: Dastan (Python) Page 1 of 19 © ZigZag Education, 2022

Programming Tasks

These questions require you to load the Skeleton Program and to make programming changes to it.

Note that any alternative or additional code changes that you deemed appropriate to make must also be evidenced

– ensuring that it is clear where in the Skeleton Program those changes have been made.

Important: Throughout this document and the Python code, methods are referred to as private, protected and
public. In this document, method names are written without leading underscores, whereas in the Python code,
method names are written with leading underscores; a private method appears with a double underscore at the

start and a protected method with a single underscore.

Task 1

Task 1 Marks: 2

This question refers to the Dastan class.

Introduce new functionality at the point at which both players are instantiated that allows players to have

custom names set by the users. Ensure that players cannot both have the same name. This code will

replace the two lines in the constructor that currently create the players with a single call to a new private

method, CreateCustomPlayers.

What you need to do

Task 1

Create a new method CreateCustomPlayers in the Dastan class. Allow the user to enter custom

names for each player. Include checks in your code to ensure that two players cannot have the same

custom name.

Allow the first player to enter any name they like, then repeatedly ask the user for the second player

name until they are both different.

Task 2

Test that the changes you have made work:

● run the skeleton program.

● enter ‘Tom’ as the first player name and then enter ‘Tom’ as the second player name, when re-

prompted, enter ‘Tom’ again and then at the next prompt, enter ‘Victoria’.

● show the game using one of the custom names to address the player in the main game menu.

 Evidence that you need to provide:

 PROGRAM SOURCE CODE showing creation of a new CreateCustomPlayers method in the

Dastan class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 2 of 19 © ZigZag Education, 2022

Task 2

Task 2 Marks: 4

This question refers to the CreateMoveOptionOffer, CreateMoveOption and CreateMoveOptions

methods and creation of a new method CreateFarisMoveOption in the Dastan class.

Develop a new move option called a ‘Faris’ (Knight). The Faris move option moves similarly to a knight in

chess – either two squares forward/backwards and one square left/right or oppositely two squares

left/right and one square forward/backwards. You should demonstrate the use of the Direction

parameter.

What you need to do

Task 1

i) Add new functionality into the

CreateMoveOptionOffer & CreateMoveOption

methods to perform a Faris move.

ii) Modify the CreateMoveOptions method to add the

Faris after the Ryott for both players.

iii) Create a new method CreateFarisMoveOption which

adds moves using the pattern shown, to the

NewMoveOption object.

Task 2

Test that the changes you have made work:

● run the skeleton program.

● play two turns, showing both players making legal Faris moves.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the CreateNewOptionOffer,

CreateMoveOption and CreateMoveOptions methods

 PROGRAM SOURCE CODE showing a new method CreateFarisMoveOption

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 3 of 19 © ZigZag Education, 2022

Task 3

Task 3 Marks: 4

Develop a new move option called a ‘Sarukh’ (Rocket). The Sarukh move option moves forward in a

rocket shape. You should demonstrate the use of the Direction parameter.

What you need to do

Task 1

i) Add new functionality into the CreateMoveOptionOffer,

CreateMoveOption and CreateMoveOptions methods

to perform a Sarukh move.

ii) Modify the CreateMoveOptions method to add the

Sarukh after the Ryott for both players.

iii) Create a new method CreateSarukhMoveOption which

adds moves using the pattern below, to the new

MoveOption object. The pattern is shown from the

viewpoint of player two. For player one, the layout is

inverted.

Task 2

Test that the changes you have made work:

● run the skeleton program.

● play two turns, showing both players making legal Sarukh moves.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the CreateMoveOptionOffer,

CreateMoveOption and CreateMoveOptions methods

 PROGRAM SOURCE CODE showing a new method CreateSarukhMoveOption

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 4 of 19 © ZigZag Education, 2022

Task 4

Task 4 Marks: 5

This question refers to the PlayGame method in the Dastan class and creation of a new method

AwardWafr in the Dastan class, GetWafrAwarded and SetWafrAwarded together with one new

attribute WafrAwarded in the Player class.

Create a ‘Wafr’ (abundance) award which can be applied to either player once per game. The ‘Wafr’ has

a 25% chance of being awarded to a player on their turn. On receipt of the ‘Wafr’, the player has the

option of ANY move from their move queue rather than just being able to select from the first three items.

The ‘Wafr’ award removes the move cost for the move the player selects for that turn.

Note: If the player makes an invalid move then they ‘lose’ their Wafr and get no value from it. Also the

player should not be able to ‘take the offer’ if a Wafr is awarded.

What you need to do

Task 1

i) Create a new method in the Dastan class called AwardWafr. This method should have a 25%

chance of returning true.

ii) Add a new private attribute to the Player class called WafrAwarded. Include accessor and

mutator (getter/setter) methods for this attribute.

Task 2

Update the PlayGame method in the Dastan class to call the new AwardWafr method. If the player

hasn’t already been awarded a Wafr, print out a message saying ‘You have been awarded a Wafr, you

can select any move from your queue for free this turn.’ Adjust the input range to allow any move option

in the queue to be selected. Ensure that there is no score adjustment for playing a move, and update the

value of the attribute to ensure that they cannot receive another Wafr.

Task 3

Test that the changes you have made work:

● run the skeleton program.

● play the game to show a player being awarded a Wafr.

● play a move option from position 4 or 5 in the move option queue.

● show the updated board and correctly modified score.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method of the Dastan

class, creation of a new method AwardWafr in the Dastan class

 PROGRAM SOURCE CODE showing changes made to the Player class and creation of the new

methods GetWafrAwarded, SetWafrAwarded together with one new attribute WafrAwarded

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 5 of 19 © ZigZag Education, 2022

Task 5

Task 5 Marks: 5

This question refers to the PlayGame method in the Dastan class and the creation of a new method

GetJustQueue in the Player class.

Introduce a new option 8 to the main game playing menu. On selecting this option, a player can look at

their opponent’s queue to spy what move options their opponent might be considering next. Spying on

an opponent’s queue, however, carries a cost of 5 points from the player’s score. After spying on an

opponent’s queue, the player’s turn should continue as normal.

What you need to do

Task 1

Create a new method in the Player class called GetJustQueue which uses the GetQueueAsString

method to return a string version of just the player’s queue.

Task 2

Modify the PlayGame method to introduce new functionality which adds a new option 8 to the main

game playing menu. If the user selects this option, display the move option queue for the opposing

player.

(Hint: You can check the current player using the SameAs method and then pick the other player.)

Subtract 5 from the current player score and display the game state again allowing the player to continue

their turn as normal.

Task 3

Test that the changes you have made work:

● run the skeleton program.

● show player one selecting option 8 from the main game menu.

● show the opponent queue being displayed clearly on the screen and the player one score

reducing by 5 points.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method and of the Dastan

class

 PROGRAM SOURCE CODE showing new method GetJustQueue in the Player class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 6 of 19 © ZigZag Education, 2022

Task 6

Task 6 Marks: 5

This question refers to the PlayGame method together with the modification of GetSquareReference,

UseMoveOptionOffer methods and creation of a new method GetValidInt in the Dastan class.

Currently the game has a number of areas where it does not handle erroneous user input. Introduce

error handling into the PlayGame, GetSquareReference and UserMoveOptionOffer methods to

prevent unhandled exceptions from occurring if the user inputs data in an incorrect data type. Allow the

user to re-enter their input, until it is valid.

Note: There is no need to check that the square contains a player piece or that the move is valid; the

player should still have a wasted turn if the move is invalid, the purpose of this is to stop the program

from crashing.

What you need to do

Task 1

Create a new private method called GetValidInt in the Dastan class which checks if the user input is a

valid integer. If the input is invalid, allow the user to keep trying again without penalty.

Task 2

Modify the GetSquareReference method to use the new GetValidInt method to test for erroneous user

input. Add an error message if the user enters an invalid square.

Task 3

Modify the UseMoveOptionOffer method to use the new GetValidInt method to test for erroneous user

input and test to confirm that the user input is within the correct range.

Task 4

Test that the changes you have made work:

● run the skeleton program.

● from the main game playing menu, enter ‘help’ as your choice and show a suitable error

message. Then choose move 1.

● For player one, enter a square of 19 and show the error message. Then choose square 22

followed by 32 to make the move.

● For player two, select option 9 to take the offer move and choose position 8. Show the error

message.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the GetSquareReference method

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the UseMoveOptionOffer method

 PROGRAM SOURCE CODE showing the creation of new GetValidInt method

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 7 of 19 © ZigZag Education, 2022

Task 7

Task 7 Marks: 5

This question refers to the PlayGame and UseMoveOptionOffer methods in the Dastan class and the

creation of a new attribute ChoiceOptionsLeft along with accessor and mutator (getter/setter) methods

DecreaseChoiceOptionsLeft and GetChoiceOptionsLeft in the Player class.

Currently a player can repeatedly select option 9 from the main game playing menu, filling their queue

with new move options. Introduce a limit so that a player can only ‘accept the offer’ from the Move Option

menu three times in a game. Each time a player accepts the offer, advise them of how many selections

they have left and remove the menu for that player once they have used it three times.

What you need to do

Task 1

Modify the Player class to introduce a new private attribute called ChoiceOptionsLeft.

i) Initialise ChoiceOptionsLeft to 3.

ii) Create a new accessor method called GetChoiceOptionsLeft which returns the value of the

attribute ChoiceOptionsLeft.

iii) Create a new mutator method called DecreaseChoiceOptionsLeft which decrements the

ChoiceOptionsLeft attribute and prints out how many options you have left.

Task 2

Modify the PlayGame method to test the number of options the player has left so that they can only use

three during the game.

i) Modify the PlayGame method so that if the player has used up all their option choices, option 9

will no longer be available to the player.

ii) Modify the UseMoveOptionOffer method so that when a move option is selected by the player,

the number of options available to them decreases by one.

Task 3

Test that the changes you have made work:

● run the skeleton program.

● select four sequential option moves from the move option list adding them to positions 1 to 4 in

the player one queue.

● show the removal of option 9 from the main game playing menu and show that it does nothing if

the player attempts to select option 9.

 Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the UseMoveOptionOffer method in the

Dastan class

 PROGRAM SOURCE CODE showing changes made to the Player class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 8 of 19 © ZigZag Education, 2022

Task 8

Task 8 Marks: 5

This question refers to the PlayGame method in the Dastan class and creation of new methods

ResetQueueBack in the MoveOptionQueue class and ResetQueueBackAfterUndo in the Player class.

Introduce a new option that allows a player to undo their last move (after they have seen the result of it

and before the next player makes their move), undoing any score gained or lost in that move and

returning the game to its previous state. Undoing a move costs a player 5 points. After undoing a move,

a player can then make an alternative move.

What you need to do

Task 1

Add the functionality to reset the queue if a move is undone.

i) Create a new method in the MoveOptionQueue class called ResetQueueBack. This method

should move the last element of the queue back to the original position in the queue. The

method should take one parameter, Position, which is the place to which the last element of the

queue will be restored.

ii) Create a new method in the Player class called ResetQueueBackAfterUndo. This method

should call the newly created ResetQueueBack method on the Queue attribute in the Player

class. The method should take one parameter, Position, which is the choice that the player

made from the menu.

Task 2

Modify the PlayGame method to introduce the new functionality.

i) If a move is legal, store the player score prior to the move.

ii) After displaying the board as a result of the move, give the player the option to undo it.

iii) If they choose to undo then: return the player score to the stored pre-move score, subtract 5

points and restore the board and the player’s queue back to their pre-move states.

Task 3

Test that the changes you have made work:

● run the skeleton program.

● show player one attempt a ‘Chowkidar’ move and then undo the move and play a ‘Ryott’.

● show the game board after the undo and the score set correctly and that player one can choose

a new move.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method in the Dastan class

 PROGRAM SOURCE CODE showing the creation of new methods ResetQueueBack in the

MoveOptionQueue class

 PROGRAM SOURCE CODE showing the creation of the new method

ResetQueueBackAfterUndo in the Player class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 9 of 19 © ZigZag Education, 2022

Task 9

Task 9 Marks: 7

This question refers to the PlayGame method together with the modification of CreateMoveOptionOffer

and CreateMoveOption methods and creation of two new methods, CreateRaaketMoveOption and

CalculateSahmMove, in the Dastan class – plus a new method, ChoiceIsSahm, in the Player class.

It also refers to a new attribute SahmUsed in the Player class along with creating two new methods,

GetSahmStatus and SetSahmUsed, which operate as the accessor and mutator (getter/setter)

methods for the newly created SahmUsed attribute.

Implement a new ‘Sahm’ move option (arrow). The Sahm can only be fired once in a game per player

and is fired instead of a piece moving. A Sahm can be fired by any piece. The Sahm fires in a straight

line forwards from the player destroying any opponent

piece(s) in its way except a Kotla, which is strong enough

to withstand an attack and protect any piece inside it. The

Sahm is only made available to a player through the

MoveOptionOffer method (they can choose to add it to

their moves by using option 9 from the main menu at the

start of the turn if a Sahm is offered to them). A Sahm will

not show up normally in the MoveOptionQueue.

The image on the right shows the player 2 piece in square

54 firing the Sahm. The Sahm will fire forwards,

destroying the player 1 pieces in squares 34 and 24.

What you need to do

Task 1

Add new functionality into the CreateMoveOptionOffer and CreateMoveOption methods and create a

new private CreateSahmMoveOption method to perform a Sahm move.

i) Modify the CreateMoveOptionOffer method to offer the new ‘Sahm’ move first.

ii) Create the new private CreateSahmMoveOption method to allow the player to select which

piece fires the Sahm and add only one possible new move Move(0,0) for this method.

 Note: The move should not actually move the piece anywhere, i.e. 0 rows and columns.

iii) Modify the CreateMoveOption method to handle Sahm.

Task 2

Modify the Player class to allow the user to use their Sahm only once.

i) Add a new SahmUsed attribute in the Player class which is initialised to False.

ii) Create two new methods, GetSahmStatus and SetSahmUsed, which operate as the accessor

and mutator (getter/setter) methods for the newly created SahmUsed attribute.

iii) Create a method ChoiceIsSahm method which takes a parameter and checks if the move option

chosen is a Sahm move, whereupon it returns True.

(TASK CONTINUES ON THE NEXT PAGE)

AQA 2023: Dastan (Python) Page 10 of 19 © ZigZag Education, 2022

Task 3

Modify the PlayGame method to test to see if the player has selected a Sahm move from the

MoveOptionOffer menu and if it has already been used. If the selected firing piece is valid, the Sahm

should destroy any opponent pieces in a straight line from the firing piece, except a Kotla. The firing

player should collect any points from multiple pieces destroyed by the Sahm.

i) Modify PlayGame to call the new method ChoiceIsSahm and only ask for the start square if it is.

ii) Create a new private method in the Dastan class called CalculateSahmMove which will

calculate the points for a Sahm move and destroy the pieces that are hit (unless they are in a

Kotla).

iii) Modify PlayGame to so that is calls the new method CalculateSahmMove to get the points for

the Sahm move and destroys the relevant pieces. It should also call the SetSahmUsed method

for the current player.

Task 4

Test that the changes you have made work:

● run the skeleton program.

● select a Chowkidar move for player one (option 2) and choose square 22 as the ‘from’ and

square 33 as the ‘to’ to diagonally move one piece in front of another player one piece in the

Kotla column.

● select 9 from menu for player two to accept the offer. Choose 1 to put it in position 1 and then

choose option 1 to select the Sahm move. Choose the piece on square 53 to fire the Sahm and

show the updated board with both player one pieces removed from the board by the Sahm fired

by player two, but not the Mirza which is safely inside the Kotla.

● show the correct adjustment of player two’s score.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the CreateMoveOptionOffer and

CreateMoveOption methods

 PROGRAM SOURCE CODE showing the creation of new CreateSahmMoveOption,

ChoiceIsSahm and CalculateSahmMove methods

 PROGRAM SOURCE CODE showing changes made to the Player class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 11 of 19 © ZigZag Education, 2022

Task 10

Task 10 Marks: 4

This question refers to the PlayGame method in the Dastan class.

Introduce a new option 7 to the main game playing menu. On selecting this option, a player can select

one of their own pieces to destroy and replace with a second Kotla. A new Kotla can only be placed in

the square in which the piece was sacrificed. A player can only replace one of their own pieces.

Replacing a piece with a Kotla should use up a player turn and they should not score any points for that

turn.

What you need to do

Task 1

Modify the PlayGame method in the Dastan class to introduce a new option 7 into the main game

playing menu. Allow the player to select a piece which they would like to replace with a new Kotla. Use

validation to ensure that the user can only select one of their pieces and it cannot be the Kotla. On

confirmation, replace the piece with a second Kotla assigned to the correct team.

Task 2

Test that the changes you have made work:

● run the skeleton program.

● select option 7 for player one from the main game menu.

● show the user selecting 52 as an invalid square for the new Kotla.

● show the Kotla being placed correctly in square 22, a valid square, and assigned to player one.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 12 of 19 © ZigZag Education, 2022

Task 11

Task 11 Marks: 9

This question refers to the PlayGame method together with a new method called ModifyQueueOptions

in the Dastan class, additional new methods ReverseQueue, SwapFirstAndLast and

MoveItemToFront in the MoveOptionQueue class together with new methods GetQueueAsString,

SwapQueue, GetMoveOptionQueue, ReversePlayerQueue, SwapFirstAndLast and

MoveItemToFront in the Player class.

Introduce a new option 6 to the main game playing menu. On selecting this option, a player can choose

sub options for making changes to their move queue using the following menu:

Options

a) Reverse the current player queue

b) Swap the current player queue with the opponent queue

c) Swap the first and last elements in the current player queue

d) Move one of the move options to the front of the current player queue

e) Nothing (make normal move)

Note: Options (a) – (d) cost 3 points, but the player can choose (e) for free.

Note: This does not count as the player’s turn and the player should still be able to play a move.

What you need to do

Task 1

Modify the Dastan class to introduce the new menu option.

i) Modify the PlayGame method to add option 6 to the move options menu.

ii) Create a new private method in the Dastan class called ModifyQueueOptions which gives the

player the above menu. Include validation to ensure that the user can only enter one of the option

choices from the menu.

iii) Adjust the score by 3 if options (a) – (d) are chosen but not if option (e) is.

Task 2

Modify the MoveOptionQueue class to add the required methods.

i) Create new method ReverseQueue to allow the current player’s queue to be reversed.

ii) Create new method SwapFirstAndLast to swap the first and last elements of the current player’s

queue.

iii) Create new method MoveItemToFront to move the item from the chosen position to the start of

the queue for the current player. There is no need to validate the input for the position to move

the option from.

(TASK CONTINUES ON THE NEXT PAGE)

AQA 2023: Dastan (Python) Page 13 of 19 © ZigZag Education, 2022

Task 3

Modify the Player class to create the required methods.

i) Create new methods ReverseQueue, SwapFirstAndLast, MoveItemToFront in the Player

class to expose the new MoveQueueOptions choices/methods to the Dastan class.

ii) Create new method ReplaceQueue to allow the current player’s queue to be replaced with the

queue passed in as a parameter. Note that it should return the current queue.

Task 4

Test that the changes you have made work:

● run the skeleton program.

● show player one selecting option 6 from the main game menu.

● show the player selecting each one of the queue options in turn and the updated queue on the

screen as a result of the change.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE for the new ModifyQueueOptions method in the Dastan class

 PROGRAM SOURCE CODE showing changes made to the MoveOptionsQueue class

 PROGRAM SOURCE CODE showing changes made to the Player class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 14 of 19 © ZigZag Education, 2022

Task 12

Task 12 Marks: 7

This question refers to the creation of a new protected attribute NoOfPieces, modification of the existing

PlayGame method and creation of two new methods CheckReincarnation and CountNormalPieces in

the Dastan class.

Introduce a new feature whereby if a player manages to get one of their pieces to the opponent’s back

row, they are given a new piece to place on any unoccupied space on their own back row. Note that the

player cannot reincarnate pieces that are not dead so they should not be able to have more pieces than

they started with.

What you need to do

Task 1

Create a new private method in the Dastan class called CountNormalPieces that will return the number

of pieces that the current player has excluding the Mirza.

Task 2

i) Modify the constructor in the Dastan class to store the number of pieces passed in as a new

protected attribute called NoOfPieces.

ii) Modify the PlayGame method in the Dastan class to call a new private method

CheckReincarnation after the move is legal.

Task 3

Create a new private method CheckReincarnation in the Dastan class. This should take one parameter

which is the FinishSquareReference for the current player’s move. If the player’s move ended on the

opponent’s back row (e.g. row 6 for player one) and the player has fewer pieces than they started with,

then allow them to reincarnate a piece on their back row in an empty square. You need to validate that

the square is empty and allow them to reselect if it is not.

Task 4

Test that the changes you have made work:

● add the following four lines of code to the START of the private method CreatePieces in the

Dastan class (be certain to remove this afterwards!):

NoOfPieces = 2
self._Board[self.__GetIndexOfSquare(51)].SetPiece(Piece("piece", self._Players[0], 1, "!"))
self._Board[self.__GetIndexOfSquare(21)].SetPiece(Piece("piece", self._Players[1], 1, '"'))
self._Board[self.__GetIndexOfSquare(54)].SetPiece(Piece("piece", self._Players[1], 1, '"'))

● run the skeleton program.

● select a Ryott move for player one, enter a start square of 51 and an end square of 61.

● show player one attempting to reincarnate a piece in column 3 and being given an error message

saying that the square must be empty.

● show player one attempting to reincarnate a piece in column 4 and the board being updated

appropriately.

● select a Ryott move for player two, enter a start square of 21 and an end square of 11.

● show player two not receiving a reincarnation message.

● Change back the CreatePieces method by removing the additional lines.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing the new CountNormalPieces method in the Dastan class

 PROGRAM SOURCE CODE showing the new CheckReincarnation method in the Dastan class

 PROGRAM SOURCE CODE showing the other code changes to the Dastan class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 15 of 19 © ZigZag Education, 2022

Task 13

Task 13 Marks: 8

This question refers to the PlayGame method together with modification of the CreateBoard method in

the Dastan class. Additionally it involves the creation of a new Taziz class which inherits from Square.

Create a new type of game square, the Taziz (advantage castle, similar to the Kotla), which is placed in

the middle of the playing board (or slightly closer to player two if there are an even number of rows).

Either player can occupy the Taziz with any of their pieces. If a player can occupy the Taziz for two turns

by both players (entering the taziz is considered a player’s first turn), then their next move choice will

have zero cost. This gives a player a zero cost move, but risks sitting in the middle of the playing board

to get it. If the player sits there for longer then they continue to get zero cost moves.

What you need to do

Task 1

Create a new Class Taziz which should inherit from the Square class.

i) Add a new protected attribute CampedTurns and initialise it to 0.

ii) Override the SetPiece and RemovePiece methods from the Square class. SetPiece should

adjust the Taziz symbol to an upper case ‘A’ if player one owns the Taziz and a lower case ‘a’ if

player two owns the Taziz (you may assume that the player with a Direction of 1 is the player at

the top – player one). When a player piece leaves the Taziz , ownership of the square should be

set to null and the symbol set to a lower case ‘x’.

iii) Create a new method GetCampedTwoTurns. Each time the Taziz is captured by a new player

CampedTurns should be reset back to zero. The GetCampedTwoTurns method should check

the number of turns using the CampedTurns attribute and return true if it is >= 2.

iv) Create a new method CheckCamp that checks if the same player is still in the square and

increments the CampedTurns attribute if they are.

Task 2

Modify the CreateBoard method in the Dastan class to place a Taziz on the square closest to the

middle of the board with a lower case ‘x’ symbol when the board is first created.

NOTE: The Taziz should be correctly placed on the board even if the size is not the original 6x6, i.e. it

should take account of the number of columns and rows.

In the case where there are an even number of rows, the Taziz should be slightly closer to player two;

also if there are an even number of columns then it should be slightly closer to the left. In the case of the

starting board this will place it on square 43, but it should work for any size board.

The initial Taziz does not belong to either player.

Task 3

Modify the PlayGame method so that if a move is legal the game should test to see if the Taziz has

been camped in for two full turns and, if so, give the selected move to the player at zero cost.

AQA 2023: Dastan (Python) Page 16 of 19 © ZigZag Education, 2022

Task 4

Test that the changes you have made work:

● run the skeleton program.

● use a Cuirassier move option 3 to move a player one piece into the Taziz (from 23 to 43).

● play the game until both players have had two turns – leaving the player one piece in the Taziz

without attacking it using player two.

● after both players have had two turns, show a move option by player one which incurs zero cost.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the CreateBoard method

 PROGRAM SOURCE CODE showing the new GetCampedTwoTurns virtual method in the

Square class

 PROGRAM SOURCE CODE showing the new Taziz class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 17 of 19 © ZigZag Education, 2022

Task 14

Task 14 Marks: 10

This question refers to the PlayGame method together with creation of a new private

WeatherEventOccurs method in the Dastan class. Additionally it involves the creation of a new class

WeatherEvent with the methods CountDownComplete, SetWeatherLocation and

GetWeatherLocation.

The Weather Event has a 50% chance of appearing in any turn and can appear in any unoccupied

space on the board. On appearance on the board, both players are given a timer warning that the

Weather Event will destroy EVERY piece on the same column as the Weather Event in two turns’ time.

After two turns by each player, the Weather Event strikes and any piece from either player still on that

column is destroyed, including the Kotla.

NOTE: A Weather Event can only occur if a Weather Event is not already occurring.

What you need to do

Task 1

Create a new class WeatherEvent which should include new methods CountDownComplete,

SetWeatherLocation and GetWeatherLocation. On instantiation, the Weather Event should store a

countdown to count the number of game turns before the event occurs. CountDownComplete should

test to see if the countdown has expired. The SetWeatherLocation and GetWeatherLocation methods

should set and get the location of the Weather Event on the board. Suitable messages should be printed

out each turn to indicate how long until the Weather Event will occur.

Task 2

Create a new method called WeatherEventOccurs in the Dastan class which has a 50% chance of

creating a Weather Event square into a random empty square on the board. When a Weather Event has

occurred, let the player know.

Task 3

Modify the PlayGame method in the Dastan class to test to see if a Weather Event has occurred and if

so if the Weather Event countdown has expired. If it has, use the Weather Event location to remove any

piece (from either player) from the same column as the Weather Event, including the Kotla. No points

are awarded for this event.

Task 4

Test that the changes you have made work:

● run the skeleton program.

● when a weather event occurs, move player pieces to be on the same column as the weather

event over the next two turns.

● show the board during the countdown to the Weather Event and after the countdown has expired,

showing the pieces from both players removed from the board.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing the new WeatherEventOccurs method

 PROGRAM SOURCE CODE showing the new WeatherEvent class

 SCREEN CAPTURE(S) showing the required test

AQA 2023: Dastan (Python) Page 18 of 19 © ZigZag Education, 2022

Task 15

Task 15 Marks: 15

This question refers to the PlayGame method together with modification of the CheckSquareIsValid

and CreatePieces methods and creation of three new private methods, CheckBarrierIsValid,

PlaceBarrier and CheckManhattanDistance in the Dastan class. Additionally it involves the creation of

new public method ContainsBarrier in the Square class and the creation of a new Barrier class which

inherits from Square.

Create a new game piece called a Barrier. On creation of the board each player can choose where they

would like to place their Barrier on the board. The Barrier is 3 squares wide. This cannot be outside of

the board or in a position occupied by a normal piece or an opponent’s Barrier. The Barrier piece cannot

be moved, occupied or jumped over by either player.

Some moves, however, do not move in a straight line, for example the Jazair. As shown in Fig 1 below,

the direct move would be through the Barrier which is not allowed. A move around the side and top of

the Barrier, however, is possible which is, therefore allowed. Use the Manhattan distance to check if

there is a move route possible around the edge of the Barrier.

Manhattan distance is a heuristic function for calculating distance between two locations, for example in

a grid. In the case of Dastan it is calculated by counting the sum of the number of squares horizontally

and then vertically (or vice versa) between a player starting location and the finishing location as shown

in Fig 2 below.

 Fig 1 Fig 2

What you need to do

Task 1

i) Create a new class Barrier which should inherit from the Square class. A Barrier should be

assigned an owner and given the symbol of a capital ‘B’ if it belongs to player one and a

lowercase ‘b’ if it belongs to player two.

ii) Create a new public method ContainsBarrier in the Square class which returns true if a Barrier

has been placed in that square.

(TASK CONTINUES ON THE NEXT PAGE)

AQA 2023: Dastan (Python) Page 19 of 19 © ZigZag Education, 2022

Task 2

i) Modify the CheckSquareIsValid method to check if the square being tested contains a Barrier so

that a piece cannot occupy it or attempt to move it.

ii) Create a new method CheckBarrierIsValid in the Dastan class which checks that the location of

a Barrier being placed by a player fits within the bounds of the board and only covers empty

squares.

iii) Create a new method called PlaceBarrier in the Dastan class which places a three-square wide

Barrier onto the board. The Barrier will always be horizontal and the player should enter the

centre square when being asked where to place the Barrier.

Task 3

i) Create a new method called CheckManhattanDistance in the Dastan class which checks both

paths from a starting square reference to a finishing square reference by traversing along the

starting row then down the finishing column and also down the starting column and along the

finishing row. This is used to check if a selected move can traverse around a Barrier rather than

over the top of it.

ii) Modify PlayGame to call CheckManhattanDistance which should replace the call to

CheckPlayerMove used to set the value of the variable MoveLegal.

Note: This should be used for all moves even if they are too short to potentially jump a Barrier as they

may be able to go round. For a single or double move either horizontally or vertically, only one path

should be considered; only for diagonal moves should you consider horizontal and then vertical or

vertical and then horizontal.

Task 4

Test that the changes you have made work:

● run the skeleton program.

● enter a position of 34 for the player one Barrier.

● enter a position of 42 for the player two Barrier.

● for player one: choose 9, then 1, then 1, then 24, then 46.

● for player two: choose 3, then 53, then 31.

● for player one: choose 2, then 25, then 45.

● for player two: choose 1, then 52, then 42, then 51.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the CheckSquareIsValid and

CreatePieces methods in the Dastan class

 PROGRAM SOURCE CODE for the new private CheckBarrierIsValid, PlaceBarrier and

CheckManhattanDistance methods in the Dastan class

 PROGRAM SOURCE CODE showing changes made to the Square class

 PROGRAM SOURCE CODE showing the new Barrier class

 SCREEN CAPTURE(S) showing the required test

	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Task 10
	Task 11
	Task 12
	Task 13
	Task 14
	Task 15

