15: SIMPLE GUI USING TKINTER

There are several applications that can be used with Python to create a GUI (graphical user interface). This short tutorial uses the standard version that comes with

Python 3. It is very simple to use to create basic functional interfaces with text boxes, buttons and forms.

15.1 CREATING THE GUI

All the code examples below will follow the same basic structure:

1 from tkinter import * <

3 # create the basic window first

Import tkinter module

'

P
g

4 root = Tk{()

create a label
7 my label = Label (root, text="Hello world!")

add the label to the root window

L

Initialise the root window

}

Create widgets (labels,
textboxes, and buttons)

!

10 my label.grid(row=0, column=1) <+

12 # the loop runs the screen and reacts to user actions

13 root.mainloop ()

\

Use grid layout to add
widgets to root window

|

Add any additional
functions/code

!

Run the mainloop method

15 | Simple Interfaces (Tkinter) Page 1 0of 9

© ZigZag Education, 2021

When the code is executed, this small window appears with the label:

—¢ O ¥
Hello world! The size of the root window can be adjusted and a title and title bar image can be added:
1 from tkinter import *
3 ¥ create the basic window first
4 root = Tk{()
edit the basic window
7 root.title ("Basic GUI")
root.geometry ("300x300")
root.iconphoto (False, PhotoImage (file='images/smiley.png'))
11 # create a label
12 my label = Label (root, text="Hello world!")
14 # add the label to the root window
15 my_label.grid(rOWZS, column=1)
17 # the loop runs the screen and reacts to user actions
1 root.mainloop ()

=5 Basic GUI

Hello world!

2 Bas

k GUI

LABEL

BUTTON

In this example, it is easier to see that the label is in row 0 and column 1, column 0 is empty.

In the next example, the GUI will have an image on a label and a button that displays text on a

second label when the button is clicked. This shows how the window will appear >

By default, each widget (label, text entry, button, etc.) takes up one column or row. We can use some

additional features of the geometry manager to improve the look of the widgets on the GUI.

LABEL

15 | Simple Interfaces (Tkinter) Page 2 of 9

© ZigZag Education, 2021

1 from tkinter import * Globe Image

create the basic window first Lines 11-14

. root = Tk() The variable logo is created on line 12, using the

. . . Photolmage() function used in Line 9 to add the icon to the
& # edit the basic window

. . root window. The image is then applied to the label in line
7 root.title ("Basic GUI")

14.
root.geocmetry ("300x300™)

S root.iconphoto(False, PhotolImage (file='images/smiley.png')) Lines 28-29
11 # set the image for the label The Label widget is placed onto the window using the
12 logo = PhotoImage (£ile='images/globe.png') geometry manager, and additional padding has been added
13 # create a label in an X and Y direction around the label to ensure it
14 logo label = Label (root, image=logo) appears towards the centre of the window.
16 Lines 19-21

1 # create a function to control clicking the button
This function controls what happens when the button

- def btn click(): created on line 25 is clicked. The function must appear
20 txt_label = Label (root, text="Hello world!") BEFORE the button is created as the button references the
21 txt label.grid(row=3, column=1, columnspan=3, padx=20, pady=20) function. This label widget is allowed to cover three

columns by using the geometry manager feature

‘columnspan’ and setting the number of columns.
24 # create a button
25 my btn = Button(root, text="Click me!", Command=btn_click} Lines 25-26

. my_btn.grid(row=z, column=l, columnspan=z, padx=20, pady=20) The button is created with the text and the function is

linked using the command.

28 # add the label to the root window
29 logo label.grid(row=0, column=2, padx=:20, pady=20)

32 # the loop runs the screen and reacts to user actions

34 root.mainloop ()

15 | Simple Interfaces (Tkinter) Page 3 of 9 © ZigZag Education, 2021

When the code is executed, the window on the left is shown; clicking the
button makes the text appear in the label below.

The next improvement is to add a text input box to ask for a name and then
include the name in the message shown in the label when the button is clicked.

% Basic GUI

% Basic GUI = O X

A 4

Click me! | Click me! |

Hello world!

Here is a section of the code showing the additions, which also involved amending which row numbers to fit in the extra label and text entry.

add a text entry
17 e = Entry(root)

20 t add label for text entry
21 e label =

.grid(row=4, column=1, padx=20, pady=20)

Label (root, text="Enter your name:

e label.grid(row=3, column=1l, padx=20, pady=20)

The function has been amended to get the text entry (line 28) and
concatenate the text variable with the label text on line 29. Finally,
the data in the text entry box is deleted on line 31.

In addition, the height of the window has been changed.

H)

27 def btn click():

28 name = e.get()
29 txt label = Label (root, text="Hello " + name)
30 txt label.grid(row=6, column=1, columnspan=3, padx=20, pady=20)

15 | Simple Interfaces (Tkinter)

Page 4 of 9

© ZigZag Education, 2021

Here is the result of the code additions:

% Basic GUI = O X

Enter your name:

=2 Basic GUI

Click me! l

Enter your name:

Ham|

Click me! |

32 Basic GUI

el

IS

/|

Enter your name:

Click me! I

Hello Harry

EXERCISE 40: SIMPLE GUI QUIz

Create a GUI that will:

A

Include a suitable title and icon in the GUI window

If the answer is correct, display suitable text message
If the answer is wrong, ask the user to try again

Display a picture of a famous landmark, e.g. the Eiffel Tower
Ask the user to enter the name of the city where the landmark is situated

Hint: remember to store your images in the same folder as your Python file. You will need to amend row positions, column positions and padding to correctly display your GUI.

15 | Simple Interfaces (Tkinter)

Page 5 of 9

© ZigZag Education, 2021

15.2 LINKING THE GUI TO A SIMPLE DATABASE

This example will demonstrate how easy it is to combine a simple database with Tkinter to create a useable interface.

1 from tkinter import * o

2 import sglite3 In addition to Tkinter, you will also
3 need to import sqlite3 to run the

4 root = Tk()

root.title ("Address Book")
6 root.iconphoto (False, PhotoImage (file='contact-list.png'))
root.geometry ("400x600")

wn

Create the database connection as

7 # create a database — detailed in 16.4 SQL and
11 conn = sqliteB.connect("address_book.db")
12
13 # create a cursor
14 ¢ = conn.cursor () The CREATE TABLE code is slightly
o : different as the program will be
1o — run several times. It will cause an
16 # create a table / error if we try to create two tables
17 with the same name.
18 c.execute ("""CREATE TABLE IF NOT EXISTS address book
19 (£ name TEXT, s name TEXT, mob TEXT, email TEXT)""")

15 | Simple Interfaces (Tkinter) Page 6 of 9 © ZigZag Education, 2021

W W W W W W NN NN NN
) g o= W N = O el o]l G [B =

-]

(V)

[as]

(V)

def submit():

Connect to the db

conn = sqlite3.connect("address_book.db"):‘*

create a cursor

c = conn.cursor ()

Insert into table

c.execute ("INSERT INTO address book VALUES (:f name, :s name, :mob, :email)",
{"f name": f name.get(),
"s name": s name.get(),
"mob": mob.get (),
"email": email.get ()

)

conn. commit ()

< §

conn.close ()

clear text boxes
f name.delete (0, END)
s name.delete (0, END)

mob.delete (0, END) <

email.delete (0, END)

Each function for the buttons
MUST connect to the
database — Lines 9-14 are
repeated here.

The data for each database
field is obtained from the
ENTRY text box for each.

The database must be saved
and closed in each function

The data is also deleted from
each ENTRY text box

15 | Simple Interfaces (Tkinter) Page 7 of 9

© ZigZag Education, 2021

def search{(): |

48

49 #+ Connect to the db The OID (object identifier) is
50 conn = SqliteB.connect("address_book.db”) a set of integers that

o # create a cursor —— uniquely identify each row.
= ¢ = conn.cursor () -« This will be used to identify
53 c.execute ("SELECT *,oid FROM address book")

- — the record to be deleted.

54 records = c.fetchall ()

55 # print (records) # check that records are printing-commented out

57 # loop through records

58 print records = ""

59 for record in records:

60 print_records += str(record[0]) + "™ " + str(record[l]) + " " + str(record[2]) + "™ " + \

6l str(record[3]) + " " + str(record[4]) + "\n"

62 query 1bl = Label (root, text=print records) \

63 queryilbl.grid(row:S, column=0, cqumnspan=3, padx=30, pady=20) Each field in the database record is
64 concatenated into a string variable,
65 conn.commit () print_records. The last field is the OID.

66 conn.close ()

Line 62 displays the data in a label.

As you can see, the buttons now have both text and an image.

106 # create submit button

107 save img = PhotoImage (file='save-file.png')

108 submit btn = Button(root, text="Save", image=save img, compound=BOTTOM, command=submit)
109 submit btn.grid(row=5, column=0, padx=30, pady=10)

15 | Simple Interfaces (Tkinter) Page 8 of 9 © ZigZag Education, 2021

The OID can now be used to identify the record to be deleted:

B Address Book - O *

First Name

def delete rec():
7C # Connect to the db
1 conn = sqlite3.connect{"address_book.db")
2 # create a cursor
C = conn.cursor ()

id no.delete (0, END)
conn.commit ()
conn.close ()

c.execute ("DELETE FROM address book WHERE oid = ?",

Surname
Mobile

Email

Save Display all
(id no.get())) B 'O

Delete

EXERCISE 41: COMPLETE THE UPDATE FEATURE

&

Enter ID number

Martin Green 098762358 Green_m@hotmail.co.uk 4
Sally Jones 0987654321 sally)@outlook.com 3

The partially completed program now needs to be completed to include an UPDATE feature; one of your

contacts may change their email, phone number or surname.

1. Add a function to perform this update using the OID field to identify the record
2. Attach the function to a new button and check it works

HINT: you will need to insert the field name into your UPDATE sql command but you do not know which the user will choose. The simplest method is to use the ‘dot’

format() string built-in function like this:

UPDATE database name SET {0} = ? WHERE field name =

?.format

(update col name), (valuel,valueZ2)

For extra credit, improve the look or the functionality of this simple GUI.

All the images, database file and partially completed Python file are provided for you to use; download them from

15 | Simple Interfaces (Tkinter) Page 9 of 9

© ZigZag Education, 2021

http://zzed.uk/10583-Ex41

	15: Simple GUI using Tkinter
	15.1 Creating the GUI
	15.2 Linking the GUI to a simple database

