
13 | Testing Page 1 of 10 © ZigZag Education, 2021

All computer programs will need to be tested to ensure that they work as expected, i.e. produce the

expected outputs when a range of inputs are entered, and secondly to ensure that, as much as

possible, all possible errors have been found and corrected or managed through the use of robust

coding techniques.

There are two ways in which a program can be tested:

1. Iterative testing

2. Final or terminal testing

Iterative testing is carried out as an integral part of developing a program; we call it iterative as it is a

process that involves the continuous testing and improvement of each individual function or module

to ensure that each part performs as expected before moving on to the next.

For example, running this code and discovering that it results in an infinite loop, changing the

indentation of the incrementing variable is an example of iterative testing.

13 | Testing Page 2 of 10 © ZigZag Education, 2021

There are three types of error that you may come across when programming:

Error Type Explanation and examples

Syntax

This means that your code does not follow the rules of the programming language.
You may have missed a bracket, forgotten to add speech marks, or have a spelling
error in a key word.

Runtime

This means that when the program runs an error occurs. Examples could be trying to
divide a number by 0 or trying to open a file that does not exist.

Logical

This means that your program will run but will give unexpected results. Examples are
using mathematical operators incorrectly, e.g. > instead of <, or forgetting to put
brackets around a calculation (BIDMAS/BODMAS).

The answer should be 3.5; we need to ensure that the calculation happens in the
right order to correct this logical error.

13 | Testing Page 3 of 10 © ZigZag Education, 2021

You will make a lot of syntax errors when you are learning how to program. They are easy to spot as

the interpreter will highlight where the error is. In this example, the interpreter indicates that the

error is EITHER at the start of the line OR at the end of the previous line of code.

Some simple rules to follow:

 If you open a bracket,

make sure you close it.

 If you use speech marks, make sure you close them.

 Use the correct operator, e.g. = means assign a value, == means equality.

 Make sure your code is indented correctly, e.g. in control structures.

These are harder to spot and, therefore, avoid, as your code will pass the syntax test and Python will

understand everything you have written but give you the wrong answers or no answers at all!

This code should read in our file and print it – can you spot the error?

Some simple rules to follow:

 Test each part of your program as you write it; it will be easier to spot your errors.

 Use a print statement to check what is happening to a variable as your code is executed.

 Check your code carefully.

 

13 | Testing Page 4 of 10 © ZigZag Education, 2021

These can be even harder to spot than runtime errors as the interpreter will not give you any error

messages or warnings. If you have calculations in your code, work them out by hand so you know

what results you should get from the program.

 Use print statements to see how the variable values change at different points in your code.

 Test each part of your program separately to pinpoint where the error could be.

 Manually trace the execution of your program using a trace table.

A trace table, sometimes called a ‘dry run’, is a manual method of testing an algorithm to ensure

there are no logic errors. If we look at the example above, the LOGIC error would be spotted easily

using this manual method.

The trace table clearly

shows that the value of

the variable ‘number’ is

never incremented inside

the while loop, making

this an infinite loop.

Changing the logic of the program to ensure that the variable ‘number’ is incremented INSIDE the

loop can again be proved using a trace table.

This is an easy way of

checking the logic of

your code before you

actually write the

program code.

Line number number <= 10 number +=1 OUTPUT

3 1

4 True

5 1

4 True

5 1

4 True

5 1

Line number number <= 10 number +=1 OUTPUT

3 1

4 True

5 1

6 2

4 2 True

5 2

6 3

4 True

5 3

6 4

13 | Testing Page 5 of 10 © ZigZag Education, 2021

Some of the errors shown in the Dealing with Errors section have specific names, e.g.

NameError, FileNotFoundError. We can write robust code to deal with these named

errors; this is called ‘exception handling’. This means that we can ensure that our

program does not just crash, but prints a meaningful error message, and we can

control what happens next.

In this example, the code is checking that input value is an integer; this is called a ‘try statement’.

If we try to enter a 0, the interpreter will ‘catch’ the exception and handle it by printing the error

message and changing the value of the variable y to 1.

13 | Testing Page 6 of 10 © ZigZag Education, 2021

IO errors occur when we try to create a file object that does not exist or to write the file to a storage

area which is full. At GCSE level you should be able to write code to deal with the first error, i.e. the

file is not there OR the filename supplied is incorrect.

In this example, the name of the file is incorrect, the exception is handled and the error message is

displayed.

We can also write code to handle multiple exceptions like the following example. This example

covers the KeyboardInterruptError, which happens when a user hits the Delete key or CTRL+C and

combines this with the ValueError seen previously.

The example shows how you might use this in a menu for a program and makes use of the sys.exit()

built-in function to end the program.

13 | Testing Page 7 of 10 © ZigZag Education, 2021

1. What type of error is shown in this code snippet?

2. Correct the code so that it will print the squared numbers from 1 to 12.

3. Rewrite the code below so that there are no exception errors when trying to open this non-

existent file.

Final, or terminal, testing happens when you have completed your whole program, having worked

through iterative testing of each component part and written robust code and error handling

routines to deal with any potential errors.

Test plans usually follow a common table format like this:

Test
Number

Test
Description

Data
Input

Expected
Outcome

Actual
Outcome

Improvements

13 | Testing Page 8 of 10 © ZigZag Education, 2021

It is important to test all your code as you complete each function or section of your program. Some

of your tests may not require any data input; for example, ensuring that a menu for a game displays

the correct options for the game.

There are three categories of test data that you need to use in your test plan:

 Normal data ‒ data that is in the normal range

 Extreme/Boundary data – data that is at the edge of the acceptable range

 Erroneous/Invalid data ‒ data that is the wrong value or the wrong data type

Each time you create a new test you need to do the following:

 Give a clear description of what is being tested

 Specify what the data input is and the type of data being entered

 Give a clear description of what you expect will happen when the test is performed

 Run the test and take a print-screen of the results

 Give a clear description of what actually happened and reference the print-screen evidence

 If the test did not work as expected, you need to explain what improvements are needed

AND run the test again to prove that the code now works as expected

The following pages have some example test plans and testing evidence for the Magic Square Game:

Test
Number

Test
Description

Data
Input

Expected
Outcome

Actual
Outcome

Improvements

1 Test that the
game board
displays
correctly when
the game
opens.

N/A That the game board
will display an 8 × 8
grid with numbers
across the top of
each column and
letters at the start of
each row.

The board
displays
correctly as
expected.
See results of
test 1.

The
instructions for
the player
should be
below the
game board so
that they are
clearer.

Results of Test 1:

13 | Testing Page 9 of 10 © ZigZag Education, 2021

Test
Number

Test
Description

Data
Input

Expected
Outcome

Actual
Outcome

Improvements

2 Test that the
game board
displays
correctly when
the game
opens.

N/A That the game board
will display an 8 × 8
grid with numbers
across the top of
each column and
letters at the start of
each row. The player
instructions display
below the grid.

The board
displays
correctly as
expected.
See results of
test 2.

None

Results of Test 2:

Test
Number

Test
Description

Data
Input

Expected
Outcome

Actual
Outcome

Improvements

3 Test the data
input for player
vertical
movement.

Erroneous
Data

‘x’

The program will
print an error
message and ask
for input again.

The results
of the test
are as
expected.
See results of
test 3.

None

Results of Test 3:

13 | Testing Page 10 of 10 © ZigZag Education, 2021

Test
Number

Test
Description

Data
Input

Expected
Outcome

Actual
Outcome

Improvements

4 Test the data
input for player
vertical
movement
direction.

Normal
Data

‘U’

The program will
accept the input
and ask how
many squares to
move.

The results of
the test are
as expected.
See results of
test 4.

None

Results of Test 4

Test
Number

Test
Description

Data
Input

Expected
Outcome

Actual
Outcome

Improvements

5 Test the data
input numbers of
squares to move.

Extreme
Data

7

The program will
accept the input
and ask whether
there is any
horizontal
movement.

The results of
the test are
as expected.
See results of
test 5.

None

Results of Test 5

	13. Testing
	13.1 Iterative testing
	13.2 Syntax, Runtime and Logical errors
	13.3 reducing syntax errors
	13.4 reducing runtime errors
	13.5 reducing logical errors
	Trace Tables

	13.6 Handling errors through robust code
	13.7 Value error
	13.8 Zero Division Error
	13.9 IO Error
	13.10 Multiple Exceptions
	13.11 Test plans
	Testing the Magic Square Game:

