13. TESTING

All computer programs will need to be tested to ensure that they work as expected, i.e. produce the
expected outputs when a range of inputs are entered, and secondly to ensure that, as much as
possible, all possible errors have been found and corrected or managed through the use of robust
coding techniques.

There are two ways in which a program can be tested:

1. Iterative testing
2. Final or terminal testing

13.1 ITERATIVE TESTING

Iterative testing is carried out as an integral part of developing a program; we call it iterative as itis a
process that involves the continuous testing and improvement of each individual function or module
to ensure that each part performs as expected before moving on to the next.

For example, running this code and discovering that it results in an infinite loop, changing the
indentation of the incrementing variable is an example of iterative testing.

def numberLoop () :
""" while loop example"™"

number = 1 # initial wvalue of the wvariable
while number <= 10: # the condition to exit the loop
print (number)
number +=1 # incrementing the wvalue of the wvariable

numbeyLoop ()

def nunberLoop () :
"""\ while loop example"""
number = 1 # initial wvalue of the wvariable
while number <= 10: # the condition to exit the loop
rint (number)
number +=1 # incrementing the wvalue of the wvariable

numberLoop ()

13 | Testing Page 1 of 10 © ZigZag Education, 2021

13.2 SYNTAX, RUNTIME AND LOGICAL ERRORS

There are three types of error that you may come across when programming:

Error Type Explanation and examples
This means that your code does not follow the rules of the programming language.
You may have missed a bracket, forgotten to add speech marks, or have a spelling
error in a key word.
Syntax >>>» Print ("Hello World!™)
Traceback (most recent call last):
File "<pyshell#l>", line 1, in <mcdule>
Print ("Hello World!™)
NameError: name "Print' is not defined
This means that when the program runs an error occurs. Examples could be trying to
divide a number by 0 or trying to open a file that does not exist.
==
Runtime Traceback (most recent call last):
File "C:\Users\ExampleFiles\readFileExample3.py"”, line %, in <module>
readFile3 ()
File "C:\Users\ExampleFiles\readFileExample3.py", line 5, in readfFile3
with open('shopping.txt','r')as myFile:
FileNotFoundError: [Errnc 2] No such file or directory: 'shopping.txt'
This means that your program will run but will give unexpected results. Examples are
using mathematical operators incorrectly, e.g. > instead of <, or forgetting to put
brackets around a calculation (BIDMAS/BODMAS).
>>> ¥ = 3
>>> y = 4
>>> average = x + y / 2
Logical >>> print (average)
5.0
The answer should be 3.5; we need to ensure that the calculation happens in the
right order to correct this logical error.
>>> average = (X + y) / Z
>>> print(average)
3.5
13 | Testing Page 2 of 10 © ZigZag Education, 2021

13.3 REDUCING SYNTAX ERRORS

You will make a lot of syntax errors when you are learning how to program. They are easy to spot as
the interpreter will highlight where the error is. In this example, the interpreter indicates that the
error is EITHER at the start of the line OR at the end of the previous line of code.

>>»>» print ("I want to print this"
BOE I have not closed the brackets

SyntaxError: invalid syntax

Some simple rules to follow:

F»> name = "John"
e Ifyou open a bracket, F»> print ("Hello {0}".format (name))
K | it Hello John
make sure you close it. 5

e If you use speech marks, make sure you close them.
e Use the correct operator, e.g. = means assign a value, == means equality.
e Make sure your code is indented correctly, e.g. in control structures.

X =3 X =5
1f ®x < y: 1T x < ¥
print ("X is bigger") print ("X is bigger")
else: else:
print ("Y i1s bigger™) print ("Y is bigger™)

13.4 REDUCING RUNTIME ERRORS

These are harder to spot and, therefore, avoid, as your code will pass the syntax test and Python will
understand everything you have written but give you the wrong answers or no answers at all!

This code should read in our file and print it — can you spot the error?

def read filel():
"""reads in file line by line"™"

with open('shopping.tzt', 'r')as myFile:
line = myFile.readline ()
while len(line) '!'= 0: # while there is data in the line

print(line, end = '")
line = myFile.readline()# read the next line

read filel

Some simple rules to follow:

e Test each part of your program as you write it; it will be easier to spot your errors.

e Use a print statement to check what is happening to a variable as your code is executed.
e Check your code carefully.

13 | Testing Page 3 of 10 © ZigZag Education, 2021

13.5 REDUCING LOGICAL ERRORS

These can be even harder to spot than runtime errors as the interpreter will not give you any error
messages or warnings. If you have calculations in your code, work them out by hand so you know
what results you should get from the program.

e Use print statements to see how the variable values change at different points in your code.
e Test each part of your program separately to pinpoint where the error could be.
e Manually trace the execution of your program using a trace table.

TRACE TABLES

A trace table, sometimes called a ‘dry run’, is a manual method of testing an algorithm to ensure
there are no logic errors. If we look at the example above, the LOGIC error would be spotted easily
using this manual method.

1 numberLoop () :
2
3 number = 1 # initial walue of the wvariable
- number <= 10: # the condition to exit the loop
5 (number)
6 number +=1 # incrementing the value of the variable
ﬂ Line | number | number<=10 | number +=1 OUTPUT
9 numberLoop () 3 1]
4 True
The trace table clearly 5 1
shows that the value of 4 True
the variable ‘number’ is 5 1
never incremented inside 4 True
the while loop, making > 1

this an infinite loop.

Changing the logic of the program to ensure that the variable ‘number’ is incremented INSIDE the
loop can again be proved using a trace table.

1 numberLoop () :
2
3 number = 1 # initial wvalue of the wvariable
- number <= 10: # the condition to exit the loop
5 (number)
6 number +=1 # incrementing the wvalue of the variable
8 Line | number | number<=10 | number +=1 OUTPUT
) numberLoop () 3 1]
4 True
5 1
This is an easy way of 6 2
checking the logic of 4 2 True
your code before you 5 2
actually write the 6 3
program code. 4 True
5 3
6 4

13 | Testing Page 4 of 10 © ZigZag Education, 2021

13.6 HANDLING ERRORS THROUGH ROBUST CODE

Some of the errors shown in the Dealing with Errors section have specific names, e.g.

NamekError, FileNotFoundError. We can write robust code to deal with these named %
errors; this is called ‘exception handling’. This means that we can ensure that our S
program does not just crash, but prints a meaningful error message, and we can CODE

control what happens next.

13.7 VALUE ERROR

In this example, the code is checking that input value is an integer; this is called a ‘try statement’.

def get input():
""" get integer input"""
while True:
try:
num = int (input("Please enter a whole number: "))
print ("The number you entered was {0}".format (num))
break
except ValueError:
print ("That was not an integer, please try again.")

return num Please enter a whole number: £
That was not an integer, please try again.
num = get_input() Please enter a whole number: 3.25

That was not an integer, please try again.
Please enter a whole number: ©

The number vyou entered was ©

e

13.8 ZERO DIVISION ERROR

def divide nums():
""" divide X by y and print result™""
try:
X = int(input("Please enter a number to divide: "))
y = int(input("Please enter a number to divide by: "))
print ("The result of {0}/{1} is {2}".format(x, vy, X / ¥))
except ZeroDivisionError:
print ("Cannot divide by 0!")
y =1 55
FPlease enter a number to divide: 15
Please enter a number to divide by: 3
The result of 15/3 is 5.0

If we try to enter a 0, the interpreter will ‘catch’ the exception and handle it by printing the error
message and changing the value of the variable y to 1.
e

Please enter a number to divide: 15

Please enter a number to divide by: 0
Cannot divide by 0!

13 | Testing Page 5 of 10 © ZigZag Education, 2021

10 errors occur when we try to create a file object that does not exist or to write the file to a storage
area which is full. At GCSE level you should be able to write code to deal with the first error, i.e. the
file is not there OR the filename supplied is incorrect.

In this example, the name of the file is incorrect, the exception is handled and the error message is
displayed.

def read file():
"""reads in file line by line"""
try:
with open('shoppin.tzt','r')as myFile:
line = myFile.readline ()
while len(line)!= 0: # while there 1s data in the line
print(line, end = '")
line = myFile.readline()# read the next line
except:
print ("File does not exist...")

e
File does not exist... [
e

read file()

13.10 MULTIPLE EXCEPTIONS

We can also write code to handle multiple exceptions like the following example. This example
covers the KeyboardInterruptError, which happens when a user hits the Delete key or CTRL+C and
combines this with the ValueError seen previously.

The example shows how you might use this in a menu for a program and makes use of the sys.exit()
built-in function to end the program.

import sys

def menul() :
""" gives the user menu options'''
print("\n\n")
print("*" * 35)
print ("\t Python Game")
print ("*" * 35)
options = [1, 2, 3, 4]

print ("""Please choose from the following menu options:
\n\tl)Enter name\n\t2) Read rules\n\t3) Play\n\t4) Exit\n""")
menu_choice = 0

while menu choice not in options:

try:
menu_choice = int(input ("Please enter 1,2,3 or 4: \n"))
break
print ("That is not a valid menu choice")
except (ValueError,KeyboardInterrupt):
print ("You must enter 1,2,3 or 4- you entered an invalid character\n")
return menu choice

13 | Testing Page 6 of 10 © ZigZag Education, 2021

def main():
""" runs all functions'''
menu_choice = 0

while menu choice != 4:
menu_choice = menu()
1f menu choice == 1:

=
)
o
]
=
o+
(W)

print("You have
elif menu choice ==

print ("You have
el1f menu choice ==

print ("You have
else:

) enter your name")

0 read the game rules")

0w N0
= = =

L]

(4]

[{¥]

=

=

W

=
()
0
1)
=
o+
()

 play™)

N
=
&)
w
0]
=
o+
(&)

print ("You have
sys.exit()

) quit™)

main ()

EXERCISE 31: ERROR HANDLING

1. What type of error is shown in this code snippet?

number = 1
while number < 13:
print (" {0} sguared = {1}".format (number,number * number))

2. Correct the code so that it will print the squared numbers from 1 to 12.

3. Rewrite the code below so that there are no exception errors when trying to open this non-
existent file.

def writeFile () :
""ryrite data to a file
myFile = open('new file.txt','r')
myFile.write("Little Bo Peep has lost her sheep ")
myFile.write ("\n")
myFile.write ("And doesn't know where to find them.™)
myFile.write ("\n")
myFile.close ()

mmmn

13.11 TEST PLANS

Final, or terminal, testing happens when you have completed your whole program, having worked
through iterative testing of each component part and written robust code and error handling
routines to deal with any potential errors.

Test plans usually follow a common table format like this:

Test Test Data Expected Actual Improvements
Number | Description Input Outcome Outcome

13 | Testing Page 7 of 10 © ZigZag Education, 2021

It is important to test all your code as you complete each function or section of your program. Some
of your tests may not require any data input; for example, ensuring that a menu for a game displays
the correct options for the game.

There are three categories of test data that you need to use in your test plan:

e Normal data — data that is in the normal range
e Extreme/Boundary data — data that is at the edge of the acceptable range
e Erroneous/Invalid data — data that is the wrong value or the wrong data type

Each time you create a new test you need to do the following:

e Give a clear description of what is being tested

e Specify what the data input is and the type of data being entered

e Give a clear description of what you expect will happen when the test is performed

e Run the test and take a print-screen of the results

e Give a clear description of what actually happened and reference the print-screen evidence

e If the test did not work as expected, you need to explain what improvements are needed
AND run the test again to prove that the code now works as expected

The following pages have some example test plans and testing evidence for the Magic Square Game:

TESTING THE MAGIC SQUARE GAME:

Test Test Data Expected Actual Improvements
Number | Description Input Outcome Outcome
1 Test that the N/A That the game board | The board The
game board will display an 8 x 8 displays instructions for
displays grid with numbers correctly as the player
correctly when across the top of expected. should be
the game each column and See results of | below the
opens. letters at the start of | test 1. game board so
each row. that they are
clearer.

Results of Test 1:

Lo o T o s e s Y s Y

i I o R w R I v=

Lo e Y e s 1)
[T e s O s Y s T Y s Y e BTN, |
Lo Ty e e Y o s

=]
=)
(=]

1
C.
C.
C.
C.
C.
C.
C.
X You can move your playver up, down or stay on the same row
1

.Please enter U,D or 5:

13 | Testing Page 8 of 10 © ZigZag Education, 2021

each row. The player
instructions display
below the grid.

Test Test Data Expected Actual Improvements
Number | Description Input Outcome Outcome
2 Test that the N/A That the game board | The board None

game board will display an 8 x 8 displays

displays grid with numbers correctly as

correctly when across the top of expected.

the game each column and See results of

opens. letters at the start of | test 2.

Results of Test 2:

Funl I I o R T I
b e T s s s O B e T
o T s T o O T T 8

i s e e N Y o Y e s R
Loy s s i s Y
[y s s e s Y s e 4
[s s s o Y s s

[s s e s Y e
[s s o o Y s s s

¥You can move your playver up,
Please enter TU,D or 5:

down or stay on the same row.

See results of
test 3.

Test Test Data Expected Actual Improvements
Number | Description Input Outcome Outcome
3 Test the data Erroneous | The program will The results None

input for player | Data print an error of the test

vertical o message and ask are as

movement. for input again. expected.

Results of Test 3:

You can move your player up,

Please enter U,D or 5: X

That is not a valid option

You can move your player up,

Please enter U,D or 5:

down or stay on the same row.

down or stay on the same row.

13 | Testing

Page 9 of 10

© ZigZag Education, 2021

movement
direction.

many squares to
move.

See results of

test 4.

Test Test Data Expected Actual Improvements
Number | Description Input Outcome Outcome
4 Test the data Normal The program will | The results of | None

input for player Data accept the input | the test are

vertical " and ask how as expected.

Results of Test 4

You can move your player up,
Please enter U,D or 5: T
Please enter the number of sguares to move:

down or stay on the same row.

Test Test Data Expected Actual Improvements
Number | Description Input Outcome Outcome
5 Test the data Extreme | The program will The results of | None
input numbers of | Data accept the input the test are
squares to move. 7 and ask whether as expected.
there is any See results of
horizontal test 5.
movement.

Results of Test 5

Please enter the number of sguares to move: 7

You can move your player left, right or stay on the same row.
Please enter L,E or S: s

13 | Testing Page 10 of 10 © ZigZag Education, 2021

	13. Testing
	13.1 Iterative testing
	13.2 Syntax, Runtime and Logical errors
	13.3 reducing syntax errors
	13.4 reducing runtime errors
	13.5 reducing logical errors
	Trace Tables

	13.6 Handling errors through robust code
	13.7 Value error
	13.8 Zero Division Error
	13.9 IO Error
	13.10 Multiple Exceptions
	13.11 Test plans
	Testing the Magic Square Game:

