
12 | Defensive Design Page 1 of 10 © ZigZag Education, 2021

What is defensive design? It means thinking about all the possible ways in which an end user may

interact with a program so that no matter what data is entered or what actions the end user takes

the program will continue to run as expected.

There are three main areas which are crucial in defensive design:

 Ensuring that the program can cope with any unexpected data inputs or actions; for

example, entering a decimal value where an integer is expected.

 Ensuring the code is written in a style that is easy to understand and read so that any

improvements are easy to make at a later date.

 Ensuring that any bugs or potential errors in the program code have been eliminated

through detailed testing with a wide range of data.

Defensive design incorporates:

 Validation

 Sanitisation

 Authentication

 Maintenance

 Testing

When you are writing your own programs, it is important to ensure that the data entered

by the end user is reasonable or sensible to ensure that your program does not crash or

produce unexpected results. This technique is called ‘validation’.

Example: You may have registered with a website where you have been asked for your date of birth.

This is commonly achieved with drop-down lists which restrict your data entry to the number of days

in a month and months in the year, and a range of years for people of all ages – it will not allow you

to be 150 years old as that is not reasonable or sensible!

Validation does not check whether the data entered is correct, only that the values are reasonable

and within any boundaries you have set, e.g. an email address must include the @ symbol.

What should be checked?

 Type check: Data type entered is the correct type, e.g. a person’s age is an integer and a

person’s name is a string

 Range check: Data entered is within the correct range, e.g. a person’s age is not a negative

number

 Length check: Data entered is the correct length, e.g. telephone numbers

 Format check: Data entered is in the right format, e.g. upper or lower case, to ensure that

equality checks work as expected

 Presence check: Data has actually been entered; for example, a username.

There are a number of techniques we can use in Python to ensure data entered is reasonable or

sensible. We can use programming techniques such as while loops, forcing the entry to be upper or

lower case or checking a value is within an acceptable range.

12 | Defensive Design Page 2 of 10 © ZigZag Education, 2021

We can also use these additional built-in functions for strings:

Function Explanation

isalpha() Returns true if all characters in a string are letters

isdigit() Returns true if all characters in a string are numbers

isalnum() Returns true if all characters are letters (a–z) in upper/lower case or numbers (0–9)

isdecimal() Returns true if characters in a string are decimals

isnumeric() Returns true if characters in a string are numbers

isupper() Returns true if characters in a string are upper case

islower() Returns true if characters in a string are lower case

It would seem that there are three built-in

functions that do the same thing; however,

technically they are different, but the reasons why

is beyond the scope of this resource and relates to

Unicode characters.

This example shows how the three of them work

for a string with a decimal point or a space.

12 | Defensive Design Page 3 of 10 © ZigZag Education, 2021

Example: type check, length check and presence check

In the example below, the code checks that the data input from the user is letters only and that the

string is at least two characters in length.

In this example, the while loop on line 5 controls the three checks for data input; the loop will

continue until the string entered has passed the three validation checks, i.e. that the data entered is

not an empty string, that the string for the user name consists of letters only, and that it is more

than one letter.

Line 6 uses the built-in function isalpha() with the logical operator NOT; this will evaluate to True if

the string contains both letters and numbers.

When these three checks have been passed in the else part of the selection statement, the Boolean

value of the variable controlling the loop is changed to False and the loop ends.

Notice on line 5 that we do not need to use any equality operator in our while statement when we

are using Boolean values.

The isdigit() built-in function ONLY applies to strings; if you wanted an integer or a float input you

would cast the input to an integer or float:

(Code shown in PyCharm IDE to display line numbers)

12 | Defensive Design Page 4 of 10 © ZigZag Education, 2021

Example: range check and type check

How could we use isdigit() in our code? Look at this example:

When we want to store telephone numbers or mobile phone numbers, these commonly start with a

0; remember pseudo-numbers?

If we used a number data type then the leading 0 will be lost. As you can see on line 7, we have

combined our checks so that the number entered must be between 9 and 11 characters in length

AND all numbers.

1. The code shown on the right

should only accept data in the

range 0–100.

Amend the code so that the user

cannot continue until a value in

the correct range has been

entered.

Your code must display an error

message if a value outside this

range is entered.

12 | Defensive Design Page 5 of 10 © ZigZag Education, 2021

An important part of defensive design is ensuring that data is in the correct format before the

program moves on to the next step.

There are two examples of input sanitisation shown in the example here:

Example 1:

The input string is forced to upper case so that any lower-case data entry will match the options

specified in the list.

Example 2:

The first character of the input string is selected for checking, in case the end user enters ‘play’ or

‘quit’ rather than a single character.

Input sanitisation could also include ‘masking’ data entry, such as when you enter a password to

login to a computer. There are techniques in Python 3 to do this, but they are beyond the scope of

this GCSE resource.

12 | Defensive Design Page 6 of 10 © ZigZag Education, 2021

As explained previously, validation techniques only check that the data entered is sensible or

reasonable, not that it is correct or valid. Authentication involves having checks to ensure that the

person trying to access a network or system is who they say they are; this is usually achieved

through the use of usernames and passwords. You will experience authentication procedures each

time you logon at school or use remote access from home. The network manager will maintain an

encrypted file of all usernames and their respective matching passwords, together with the level of

access to the system, i.e. the areas of the network you are allowed to see.

At GCSE level you are not expected to use any encryption to protect usernames and passwords, and

we will, therefore, store the data as plain text.

This example on page 7 uses a 2D array which is hard-coded into the program, and nested loops to

examine each username or password.

Lines 3–4 Creates the 2D array; each user has a username, password and security level.

Lines 7–9 Variables are initialised to be used in the condition-controlled loop.

Line 11 The while loop has two conditions, giving the user three attempts to enter a valid

username.

Lines 12–13 The count is incremented on Line 12 and the input requested in Line 13.

Lines 14–26 The nested FOR loop loops through the main array to look at each of the sub-arrays,

Line 16 then looks at each item in each sub-array. The nested IF statements check

whether the username entered matches the data at position [0] in the sub-arrays.

 If it does match, then the variable found is changed to True, meaning one of the

conditions controlling the WHILE loop has now changed. The user is prompted for

the password (Line 20). Line 21 uses the password which matches the username

(user Position [1]) to check that the password entered is a match.

Lines 30–31 If the user has incorrectly entered a username three times, the error message is

printed.

Part A: The authentication code example using 2D arrays checks that the username is entered

correctly after three attempts; however, it only gives the user one attempt at the password.

Improve the code, using functions and parameter passing, so that each part of the process

allows the user three attempts before displaying the message on Line 31.

Part B: The current authentication code does not allow for new users to be added or any former

users to be removed, which is clearly a security issue.

Improve your solution to incorporate a method to ensure that the list of system users can be

updated without needing to edit the original program code.

12 | Defensive Design Page 7 of 10 © ZigZag Education, 2021

(Code shown in PyCharm IDE to display line numbers)

12 | Defensive Design Page 8 of 10 © ZigZag Education, 2021

Making your programs easy to maintain is a key feature of defensive design, which should be

considered and planned at the outset. This is important because, in the future, the program may

need additional features or need to be adapted to work with a new database, etc.

For example, many government systems and banking systems still use a language called COBOL

(Common Business-Oriented Language). There are fewer and fewer programmers who understand it;

therefore, it is vital that the code has been clearly documented and explained.

The best way to ensure that your program is easily maintainable is to use:

 Comments

 Suitable variable names

 Clear indentation in the code

There are several ways in which comments can be used to provide information about your program.

 Using docstrings in functions to explain what they do

 Explaining any complex sections of code

 Providing breaks between different areas of long, complex sections of code

12 | Defensive Design Page 9 of 10 © ZigZag Education, 2021

In this more complex example, the code has been divided into separate tasks with more detailed

comments:

As demonstrated in the example above, it is important to use variable names that will make sense if

you need to return to the program at a later date. Additional comments have been used to explain

exactly what each variable will be used for in the program.

The use of appropriate variable names in Python is also covered in Chapter 2 – Variables &

Assignment.

12 | Defensive Design Page 10 of 10 © ZigZag Education, 2021

Python indents the code you write automatically, providing you follow the correct syntax. Sometimes

the meaning of your code can be altered; for example, in nested loops if you incorrectly indent code

such as incrementing a count variable.

Example of incorrect indentation:

 What will be the result of running this code?

The correct indentation will avoid an infinite loop!

	12. Defensive Design
	12.1 Validation
	12.2 Sanitisation
	12.3 Authentication techniques
	12.4 Maintenance
	Comments
	Suitable Variable Names
	Indentation

