12. DEFENSIVE DESIGN

What is defensive design? It means thinking about all the possible ways in which an end user may
interact with a program so that no matter what data is entered or what actions the end user takes
the program will continue to run as expected.

There are three main areas which are crucial in defensive design:

e Ensuring that the program can cope with any unexpected data inputs or actions; for
example, entering a decimal value where an integer is expected.

e Ensuring the code is written in a style that is easy to understand and read so that any
improvements are easy to make at a later date.

e Ensuring that any bugs or potential errors in the program code have been eliminated
through detailed testing with a wide range of data.

Defensive design incorporates:

e Validation

e Sanitisation

e Authentication
e Maintenance
o Testing

12.1 VALIDATION

When you are writing your own programs, it is important to ensure that the data entered
by the end user is reasonable or sensible to ensure that your program does not crash or

S ROBUST

produce unexpected results. This technique is called ‘validation’. DE

Example: You may have registered with a website where you have been asked for your date of birth.
This is commonly achieved with drop-down lists which restrict your data entry to the number of days
in a month and months in the year, and a range of years for people of all ages — it will not allow you
to be 150 years old as that is not reasonable or sensible!

Validation does not check whether the data entered is correct, only that the values are reasonable
and within any boundaries you have set, e.g. an email address must include the @ symbol.

What should be checked?

o Type check: Data type entered is the correct type, e.g. a person’s age is an integer and a
person’s name is a string

e Range check: Data entered is within the correct range, e.g. a person’s age is not a negative
number

e Length check: Data entered is the correct length, e.g. telephone numbers

o Format check: Data entered is in the right format, e.g. upper or lower case, to ensure that
equality checks work as expected

e Presence check: Data has actually been entered; for example, a username.

There are a number of techniques we can use in Python to ensure data entered is reasonable or
sensible. We can use programming techniques such as while loops, forcing the entry to be upper or
lower case or checking a value is within an acceptable range.

12 | Defensive Design Page 1 of 10 © ZigZag Education, 2021

We can also use these additional built-in functions for strings:

Function Explanation

isalpha() Returns true if all characters in a string are letters

isdigit() Returns true if all characters in a string are numbers

isalnum() Returns true if all characters are letters (a—z) in upper/lower case or numbers (0-9)

isdecimal() | Returns true if characters in a string are decimals

isnumeric() | Returns true if characters in a string are numbers

isupper() Returns true if characters in a string are upper case

islower() Returns true if characters in a string are lower case

It would seem that there are three built-in
functions that do the same thing; however,
technically they are different, but the reasons why
is beyond the scope of this resource and relates to
Unicode characters.

This example shows how the three of them work
for a string with a decimal point or a space.

>>> 5 = "12.34"

>>> print(s.isdigit())
False

>>> print(s.isdecimal())
False

>>> print(s.isnumeric())
False

>>> g5 = "12 34"

>>> print(s.isdigit())
False

>>> g = "1234"

>>> print(s.isdigit())
True

>>> print(s.isdecimal())
True

>>> print(s.isnumeric())
True

12 | Defensive Design Page 2 of 10 © ZigZag Education, 2021

Example: type check, length check and presence check

In the example below, the code checks that the data input from the user is letters only and that the
string is at least two characters in length.

def get nams () :

asks for user's name
nams = '
invalid nams = Trus f variable to control the while loop
while invalid name:

names = input ("Enter name :") f ask for input inside the loop

if nams == ""

print ({"The data entry is blank,please enter your name")
elif not nams.isalphaf():

print ("Your name can only contain letters.")
elif len(nams) <

print {"Your name must have more than 1 letter™)
else:

print ("Valid name entry")

invalid nams = False

return name

def main():

runs all functions
name = get name ()

print ("Hello {0}".format (name))

(Code shown in PyCharm IDE to display line numbers)

main()

In this example, the while loop on line 5 controls the three checks for data input; the loop will
continue until the string entered has passed the three validation checks, i.e. that the data entered is
not an empty string, that the string for the user name consists of letters only, and that it is more
than one letter.

Line 6 uses the built-in function isalpha() with the logical operator NOT; this will evaluate to True if
the string contains both letters and numbers.

When these three checks have been passed in the else part of the selection statement, the Boolean
value of the variable controlling the loop is changed to False and the loop ends.

Notice on line 5 that we do not need to use any equality operator in our while statement when we
are using Boolean values.

The isdigit() built-in function ONLY applies to strings; if you wanted an integer or a float input you
would cast the input to an integer or float:

>>> hw _score = int(input("Enter score: "))

Enter score: 55

»>>> type (hw_score)

<class '"int'>

>>> shoe size = float(input("Enter shoes size: "))
Enter shoe size: 5.5

>>> type(shoe size)

<gclass 'fleoat'>

e

12 | Defensive Design Page 3 of 10 © ZigZag Education, 2021

Example: range check and type check

How could we use isdigit() in our code? Look at this example:

1 def get_mobile no():
E tel number = !
- invalid no = True

5 while inwvalid no:

7 if len(tel number)

10 else:

12 return tel number

15 def maini) :

LRIRT]

16 runs all functions

21 main ()

2 """gets mob phone number as pseudonumber

in range (%, .2)

invalid no = False

non

won

tel number = input ("Enter phone number: ")
and tel number.isdigit():
A print ("Valid entry")

print ("You must enter a number must be between 9 and 11 digits")

1 tel number = get_mobile nol()
18 print ("You entered {0}".format (tel_number))

When we want to store telephone numbers or mobile phone numbers, these commonly start with a

0; remember pseudo-numbers?

If we used a number data type then the leading 0 will be lost. As you can see on line 7, we have
combined our checks so that the number entered must be between 9 and 11 characters in length

AND all numbers.

EXERCISE 29: VALIDATION

1. The code shown on the right
should only accept data in the
range 0-100.

Amend the code so that the user
cannot continue until a value in
the correct range has been
entered.

def get score():
"""asks for test score™""

return test score

def main():
"""runs all functions"""
test score = get score()
print ("These are the GCSE
if test score >= 90:

test score = int(input('Enter test score: "))

grade boundaries:"™)

print ('yYour grade is 9'")
elif test score >= 80:
f print ('Your grade is 8'")
Your code must display an error c1if test score >= 703
message if a value outside this print ('Your grade is 7'")
. 2l1f test score >= &0:
range is entered. print ('vour grade is 6')
2lif test score >= 50:
print ('Your grade is 5'")
elif test score >= 40:
print ('Your grade is 4'")
elif test score >= 30:
print('Your grade is 3")
elif test score >= 20:
print('Your grade is 2'")
else
print ('Your grade is 1")
main ()
12 | Defensive Design Page 4 of 10 © ZigZag Education, 2021

12.2 SANITISATION

An important part of defensive design is ensuring that data is in the correct format before the
program moves on to the next step.

There are two examples of input sanitisation shown in the example here:

def display menu():

" displays the menu and asks for play choice"""

f use print to display the menu
print ("t tGame Menu'n")
print ("“t%“tE - Enter Nams'n't\tP - Play Games'n'thtQ - Quit")

valid option = ['E', 'P', 'Q']

while True:
selection = input ("Please enter your choice: ") .upper()
selection = selection[0]
if selection in valid options:
break
else:
print ("That is not a wvalid choice™)

return selection

Example 1:

The input string is forced to upper case so that any lower-case data entry will match the options
specified in the list.

Example 2:

The first character of the input string is selected for checking, in case the end user enters ‘play’ or
‘quit’ rather than a single character.

Input sanitisation could also include ‘masking’ data entry, such as when you enter a password to
login to a computer. There are techniques in Python 3 to do this, but they are beyond the scope of
this GCSE resource.

12 | Defensive Design Page 5 of 10 © ZigZag Education, 2021

12.3 AUTHENTICATION TECHNIQUES

As explained previously, validation techniques only check that the data entered is sensible or
reasonable, not that it is correct or valid. Authentication involves having checks to ensure that the
person trying to access a network or system is who they say they are; this is usually achieved
through the use of usernames and passwords. You will experience authentication procedures each
time you logon at school or use remote access from home. The network manager will maintain an
encrypted file of all usernames and their respective matching passwords, together with the level of
access to the system, i.e. the areas of the network you are allowed to see.

At GCSE level you are not expected to use any encryption to protect usernames and passwords, and
we will, therefore, store the data as plain text.

This example on page 7 uses a 2D array which is hard-coded into the program, and nested loops to
examine each username or password.

Lines 3—4 Creates the 2D array; each user has a username, password and security level.

Lines 7-9 Variables are initialised to be used in the condition-controlled loop.

Line 11 The while loop has two conditions, giving the user three attempts to enter a valid
username.

Lines 12-13 The count is incremented on Line 12 and the input requested in Line 13.

Lines 14-26 The nested FOR loop loops through the main array to look at each of the sub-arrays,
Line 16 then looks at each item in each sub-array. The nested IF statements check
whether the username entered matches the data at position [0] in the sub-arrays.

If it does match, then the variable found is changed to True, meaning one of the
conditions controlling the WHILE loop has now changed. The user is prompted for
the password (Line 20). Line 21 uses the password which matches the username
(user Position [1]) to check that the password entered is a match.

Lines 30-31 If the user has incorrectly entered a username three times, the error message is
printed.

EXERCISE 30: AUTHENTICATION

Part A: The authentication code example using 2D arrays checks that the username is entered
correctly after three attempts; however, it only gives the user one attempt at the password.

Improve the code, using functions and parameter passing, so that each part of the process
allows the user three attempts before displaying the message on Line 31.

Part B: The current authentication code does not allow for new users to be added or any former
users to be removed, which is clearly a security issue.

Improve your solution to incorporate a method to ensure that the list of system users can be
updated without needing to edit the original program code.

12 | Defensive Design Page 6 of 10 © ZigZag Education, 2021

1 # Authentication routines using 2D arrays

3 system users = [["Username", "Password", "Level"], ["13Garcia",
4 "Standard User"], ["18Khan", "4xkY5bMd2",

5

6 # set variables to control the loop

7 found = False

8 valid = False

9 count = 0

10

11 while not found and count < 3:

12 count += 1

13 u _name = input ("Enter your username: ")

14 # loop through 2D array to check if the user exists

15 for user in system users:

16 for each in user:

17 if each == u _name:

18 found = True

19 print ("Username valid")
20 u pwd = input ("Enter password: ")
21 if user[l] == u_pwd:
22 valid = True
23 print ("Password accepted: " + str(user[?]
24 break
25 else:
26 print ("Invalid username or password'")
29 # If 3 attempts to enter valid username are not successful
- if not found:

31 print ("Three attempts-Invalid username or password'")

+ " Level"))

"gBkEKg99",
"Standard Usexr"],

"Admin"],
["16Simpson",

["15Connor", "R5SmF92Sqg",
"8B73gQB7", "Standard User"]]

(Code shown in PyCharm IDE to display line numbers)

12 | Defensive Design Page 7 of 10

© ZigZag Education, 2021

12.4 MAINTENANCE

Making your programs easy to maintain is a key feature of defensive design, which should be
considered and planned at the outset. This is important because, in the future, the program may
need additional features or need to be adapted to work with a new database, etc.

For example, many government systems and banking systems still use a language called COBOL
(Common Business-Oriented Language). There are fewer and fewer programmers who understand it;
therefore, it is vital that the code has been clearly documented and explained.

The best way to ensure that your program is easily maintainable is to use:

e Comments
e Suitable variable names
e C(Clear indentation in the code

COMMENTS
There are several ways in which comments can be used to provide information about your program.

e Using docstrings in functions to explain what they do
e Explaining any complex sections of code
e Providing breaks between different areas of long, complex sections of code

def get name(}:
nmnvalidates username entry, checks for blank entry

numbers in the string or single character entry """
name =
invalid name = True # variable to control the while loop
While invalid name:
name = input ("Enter name :") # ask for input inside the loop
if name == "":

print ("The data entry i=s blank,please enter your name")
elif not name.isalphai():

print ("Your name can only contain letters.")
elif len(name) <=

print ("Your name must have more than 1 letter")
else:

print ({"Valid name entry")

invalid name = False

return name

def main():
"R runs all functions™""™
name = get_name ()
print ("Helleo {0}".format (name))

main ()

12 | Defensive Design Page 8 of 10 © ZigZag Education, 2021

In this more complex example, the code has been divided into separate tasks with more detailed
comments:

Taskl- read in the file

11 def read file():
12 """reads in the text file and splits it into two lists. Then choose the word to be guessed,
13 the index of the word and the definition from the chosen word index.™™™

15 # create the empty lists for the keyword and definitions
1 keyword = []

18 defined = []
13 temp = []

21 # use error trapping when reading into the two lists

23 try:
24 my_file = open("keywords.txt",

25 # read into a temp list

r')

2 try:
28 for eachline in my file:
25 terp.append (eachline.strip()) # strips the /n newline code

31 # list comprehension makes 2 new lists by copying odd and even lines to two new lists
32 keyword = [temp[i] for i in range(len{temp)) if 1 % 2 = 0
defined = [temp[i] for i in range(len(temp)) if 1 § Z == 1]

35 finally:
5 my_file.closs()
except IQError:
print ("File dees not exist...")

41 # create a list the same length as keyword to count when guessed twice

41 matched = []

42 # create guessed empty list- this will be used to count which gquestions hawve been answered twice
43 guessed = []

44 # create a completed list to check against when looping through guestions

45 completed = []

< # return mulciple cbkjects in a list
45 return defined, kevword,matched, guessed,completed

51 # Taski- find a random keyword

SUITABLE VARIABLE NAMES

As demonstrated in the example above, it is important to use variable names that will make sense if
you need to return to the program at a later date. Additional comments have been used to explain
exactly what each variable will be used for in the program.

The use of appropriate variable names in Python is also covered in Chapter 2 — Variables &
Assignment.

12 | Defensive Design Page 9 of 10 © ZigZag Education, 2021

[INDENTATION

Python indents the code you write automatically, providing you follow the correct syntax. Sometimes
the meaning of your code can be altered; for example, in nested loops if you incorrectly indent code
such as incrementing a count variable.

Example of incorrect indentation:

def numberLoop() :
""" while loop example"""
number = 1 # 1nitial value of the variable
while number <= 10: # the condition to exit the loop
print (number)
number +=1 # incrementing the wvalue of the wvariable
numberLoop ()

What will be the result of running this code?

The correct indentation will avoid an infinite loop!

def numberLoop() :
""" while loop example"""
number = 1 # initial wvalue of the variable
while number <= 10: # the condition to exit the loop
print (number)
number +=1 # incrementing the value of the wvariable

numberLoop ()

12 | Defensive Design Page 10 of 10 © ZigZag Education, 2021

	12. Defensive Design
	12.1 Validation
	12.2 Sanitisation
	12.3 Authentication techniques
	12.4 Maintenance
	Comments
	Suitable Variable Names
	Indentation

