
11 | File Handling Page 1 of 6 © ZigZag Education, 2021

None of the programs we have written will store any data permanently; the data only exists while

the program is running. In order to save data from our programs to use again, we need to write the

data to a text file and save it in secondary storage.

At GCSE level, this means saving the text file in the same directory as the Python program we have

written.

When we want to write to a file in Python we need to create a ‘file object’ using the built-in function:

open(). The open() function has two arguments, the file name and the MODE. The mode determines

how the file is read from or written to.

Example 1:

The text file has been created in the same folder as the program file.

Common modes for reading from and writing to a file:

Mode Meaning

‘r’ Used when the file is to be read into your program

‘w’ Used when writing to a file; any existing file with the same name will be deleted

‘a’
Used when opening an existing file to write data; the data is automatically appended
to the end of the file

In the method used in Example 1 above, you must add the line of code to close the file object after

you have finished reading or writing data.

There is a second method we can use which will automatically close the file object for us; it also

makes error handling much easier when we are writing robust code.

11 | File Handling Page 2 of 6 © ZigZag Education, 2021

Example 2:

This method automatically closes the file so we don’t need to add the line of code.

Example 3:

This example shows the append mode of writing to an

existing file:

We have been looking at writing to text files;

there is another type of file that you may need to

understand how to use in your programming

project, a CSV (Comma Separated Value) file. This

is the standard file format to import and export

data to and from a database or spreadsheet. A

CSV file will contain data in rows, separated by

commas into columns.

When we want to read from or write to a CSV file format we need to import the CSV module.

11 | File Handling Page 3 of 6 © ZigZag Education, 2021

As you can see in this example, I am writing a 2D list called studentDetails to the CSV file; this

method uses the csv.writer() built-in function to manage the process of writing the data in the CSV

file format. The writerow() built-in function is then used to write the rows of data into the file, and

this is the result:

The data can be opened in a text editor, spreadsheet or database program.

When we read in a file, we also need to create a ‘file object’, just as we did when writing to a file.

This time there are several methods we can use to read from the file, which each work in a slightly

different way.

Example 1:

11 | File Handling Page 4 of 6 © ZigZag Education, 2021

When we read in a text file, we will generally want to do some other type of processing with it rather

than just print it out.

Example 2:

This example uses readlines(), which creates a list of the string values in the file but includes the ‘\n’

newline code in each list element.

This can cause problems when you are trying to compare a string entered by the user with a string in

the list; they do not match!

Example 3:

The solution is to use another method to read in the file to a list which also allows us to ‘strip’ out

the newline character.

11 | File Handling Page 5 of 6 © ZigZag Education, 2021

Example 4:

The text file can also be read straight into an array, as shown in Example 4. This time the newline

character is stripped from the end of the string before it is appended to the list. This is an alternative

option to using the split() built-in function; the result is the same.

Example 5:

When the text file contains a string of characters, we can use this method.

Original file:

The text string that has been read in and printed out:

11 | File Handling Page 6 of 6 © ZigZag Education, 2021

Again, you may also need to read in a text file in to your program which is saved in CSV format. Import

the CSV module, which deals with reading in the rows and columns of data. Look at this example:

This is the CSV file which has been saved using a simple text editor. As you can see, the data is in

rows and each data item is separated by commas.

The data in the text file has now been read into a 2D list of

lists; each nested list contains the data for each student and

a list of column headings. This data could be displayed in a

more user-friendly way; look at Printing out a 2D List in

Chapter 8 for more detail.

1. Create a text file with the first names of 12 students in your class and save it as

‘students.txt’. Read in the file into a list and sort it into order, write the list back to the file

and check the names are now in alphabetical order.

2. Create a text file with some items of grocery shopping, save as ‘shopping.txt’. Write a

program that will:

a. Read in the file into a suitable data structure

b. Ask the user for three additional items to add to the list

c. Check whether the item is in the list, if not add it to the list

d. Print out the new list with the three additional items

	11. File Handling
	11.1 Writing to a file
	11.2 Reading from a file

