5. STRUCTURED PROGRAMMING

When you create your own programs, it is important to structure them so that they are:

1. Easyto read
2. Easy to understand
3. Easy to maintain

Programming problems are easier to solve by breaking them down into a series of smaller steps
which are easier to understand and solve. The total solution is created when all the smaller sub-
problems have been solved.

The three constructs that we use in structured programming are:

1. Sequence
2. Selection
3. lteration

5.1 SEQUENCE

In structured programming, the SEQUENCE in which instructions are executed is the same order as
they appear in the code:

Seguence Example

item guantity = int(input("Please enter the guantity reguired: "))
item price = float (input("Please enter the item price: "))

total = item guantity * item price

print {("The total cost is £{0}.".format (total))

When trying to solve problems we can also represent them using either pseudocode or diagrams:

START

total =

itern_guaniity * X
item_price Pseudocode:

Flow chart:

Your programs use sequencing when the solution can be
broken down into a series of steps that are processed one
after another.

item quantity - INPUT

item price ~ INPUT

total « item gquantity * item price
OUTPUT 'The total cost is £',total

5 | Structured Programming Page 1 of 14 © ZigZag Education, 2021

[RELATIONAL OPERATORS

Operator | What it means Example
x> 7 == &
== Equality operator; checks whether both values are the same
False
= Not equal to >>> 8 1= 2
q True
> Greater than >>> 65 > 12
True
»=xx 21 £ 12
< Less than
False
>= Greater than or equal to >>> 15 >= 12
Trues
<= »=» 34 <= 35
Less than or equal to
True
LOGICAL OPERATORS
Operator | What it means Example
. *rr X = 6
AND Log|c§! AND checks whether both s x> 0 and x < 7
conditions are true or false
True
x> = 5
OR Logical OR checks whether EITHER of the »> y = 8
conditions is true x> x/2 == 2 or y/4 == 2
True
Logical NOT reverses a Boolean value. In x> x = 5
NOT the example, x >y evaluates to False, x> oy = B
using the logical NOT reverses the x> onot(®x > oy)
evaluation to true. True
EXERCISE 07: RELATIONAL AND LOGICAL OPERATORS
Use print statements to find the answers to the following:
1. Calculate the following (True or False)
a. 231=15 b. 5+3<10 c. 6>10==10<2
2. Ifa=3andb =8, what are the results of the following statements?
a. a<b b. 6>=a c. b>a==False d. True !=(a==b)

3. Ifc=True and d = False, what are the results of the following statements?
a. candd b. notdorc c¢. c==dandTrue

5 | Structured Programming Page 2 of 14 © ZigZag Education, 2021

5.2 SELECTION

IF STATEMENT

Selection or conditional statements execute a block of code based on the result of some test or
condition we have set in the code. We are testing to see whether the result is TRUE or FALSE and we
can set different actions depending on the result of our test.

Example:

76 > 23:
print ("76 is

greater than 23")

1f 15 = 2Z3:
print("15 is greater than 23")
e
76 1s greater than 23
F

In this example, the test in the first block of code evaluates to true so the print statement is
executed. The test in the second example evaluates to false so the print statement is NOT executed.

Note: Remember that it is important that your code is correctly indented to avoid syntax errors.

This can be used in simple examples like this, where we are asking for input from the user and

checking this against a present condition in our code:

What happens if | enter a value below 507?

mark = int (input ("Enter test score: "))
1t mark >= 50:
print ("Pass™)
print ("Test failed, resit please") Fnter test score: 57
Pass
P

We need the code to be able to deal with BOTH true and false inputs.

5 | Structured Programming Page 3 of 14

© ZigZag Education, 2021

IF ELSE STATEMENT

Using an If Else statement, | can now include a false code block so that something happens if the test
condition does not evaluate to true.

Example:

mark = int (input ("Enter test score: "))
f mark »>= 50:
print ("Pass")

print ("Test failed, resit please")

Enter test score: 49
Test failed, resit please
e

I may want my code to check several conditions and proceed with the condition which is true. For
example, a different score in the test used above will result in a different grade.

IF/ELIF STATEMENT

mark = int (input ("Enter test score: "})

1T mark <= 4%9:

print ("Grade D: Please attend resit")
1:2f mark > 50 zand mark < 56:

print ("Grade C-needs improvemsnt™)
1:f mark >= 56 and mark < €5:

print ("Grade B-good work")
1:f mark »>= €5 and mark < 70:

print ("Grade A-well done")

print ("Grade A¥*- excellent!™)

The structure of the IF/ELIF statement should follow these rules:

If Condition 1 = True:
execute Code 1

elif Condition 2 = True:
execute Code 2

else:

execute Code 3

You can test any number of conditions using this method; your code does not have to include an
ELSE but, if it does, it must be the last statement.

5 | Structured Programming Page 4 of 14 © ZigZag Education, 2021

NESTING IF STATEMENTS
We can also use IF/ELIF statements to check sub-conditions in a program:

X = 5 |
y =8 >

¥ 15 less than y
if x == y: e

print ("x and y are equal")

1

—

i

n

it x < y:
print("x 1s less than y")
l .

i
i

print ("x is greater than y")

In this example, condition 1 evaluates to false so the else part of the IF statement is executed.
Condition 2, in the first part of the nested if statement, evaluates to true, as 5 is less than 8, and the
print statement is executed.

EXERCISE 08: IF/ELIF STATEMENTS

1. Complete the program shown in the
flow chart.

~ ~

2. Write a program which asks for the
names of two football teams playing Ask for number
. A between 1 & 20
against each other and their scores.

Your program should calculate how

many points each team gets (3 for a

win, 1 for a draw, 0 if they lose). Output Incorrect

entry. Number NOT
between 1 & 20"

Hint: you will need to declare constants to
use in calculating the points. Remember,
one team will be the HOME team, the other
the AWAY team.

Is number == 207

Output Thank you.
Number within
correct range’.

STOP

5 | Structured Programming Page 5 of 14 © ZigZag Education, 2021

5.3 ITERATION

In programming, iteration means repeating instructions or processes over and over again. This is
more commonly known as ‘looping’.

Example:

Increase score
Whack the

mole

Another mole
pops up

If you do not hit the mole within a certain time limit, the game is over.

In Python, there are two types of loop that can be used, a FOR loop and a WHILE loop.

WHILE LOOPS

While loops are also known as conditional loops as they will continue to iterate or loop until a
condition, which you have set in your code, is met. It is important to make sure that you have
written code that will allow your loop to finish and avoid an infinite loop.

Example:

cdef numberLoop () =
"M while loop example™"™
number = 1 # initial walue of the wvariable
while number <= 10: # the condition to exit the loop
print (number)
number += 1 # increments the wvalue of 'number’'

numberLoop ()

5 | Structured Programming Page 6 of 14 © ZigZag Education, 2021

If the value of the variable ‘number’ is not incremented by 1 each time the loop iterates, the
condition to exit the loop will never be reached as ‘number’ will always be less than 10.

| can also check a condition entered by a user:

while Input():

"""while loop example input™™"
answer = 'n'
while answer != 'y':
answer = input({"Zre we there yet? Enter v/n: ").lower()
print ("At last!™"™)
e

whileInput ()

Are we there yet? Enter y/n: Almost —
Are we there yet? Enter y/n: Nearly
Are we there yet? Enter y/n: Very soon
Are we there yet? Enter y/n: Y

At last!

>

As you can see, the loop continues until the condition is met, and the final print statement is then
executed. Remember that use of the .lower() built-in function changes my capital letter Y into lower-
casey.

COUNTING AND TOTALLING WITH A WHILE LOOP

We can use a while loop to iterate (loop) and count up (increment) or count down (decrement) until
a preset condition is true or false.

Example: N
1a

. - - 15
print 5 times table 20
25

30

1 = —_— | 35
. . 40
while 1 <= 1Z: i5
]

print(i * 5) 50

) 55

1 += i

It is important to set the initial value of ‘i' on Line 3. The preset condition for exiting the while loop is
then set on Line 4 with the incrementing value of i set on Line 6 with Line 5 printing out the resulting
5 times table.

5 | Structured Programming Page 7 of 14 © ZigZag Education, 2021

Example 2:

1 # count down example Count. . .
Count...

Count...
g = = | Count...
Count...

e Count...
print ("Count... " + str(x)) Count...

. i Count. ..
if x == 0: Count. ..

7 print ("Lift off!") Soant.

4 while x >= 0:

|l % T R~ 5 T VIS R B Y e B

Count...
x —= Lift off!

In this example of a countdown, the initial value of x, on Line 3, must be greater than 0 as we are
counting down from 10. The condition for exiting the while loop is set on Line 4 and the value of x is
concatenated into a print statement on Line 5.

An additional check on Line 6 checks when the count has reached 0 for an extra print statement and
the value of x is decremented on Line 8.

¥ =0 Total =0
Example 3: x=1 Total =1
¥ =2 Total = 3 I
1 # adding to a total x =3 Total = &
2 ¥ =4 Total = 10
¥ =5 Total = 15
total = ¥ = 6 Total = 21
4 ® = | x =7 Total = 28
£ E ¥ =8 Total = 36
hil . ¥ =9 Total = 45
while x <= 10: x = 10 Total = 55
7 total = total + x
print("x = " + str(x) + " Total = " + str(total))
X += 1

In this example, the while loop counts from 0 to 10; look at Line 6. In Line 7, the value of x is added
to the running total and the results are printed on Line 8. The value of x is then incremented by 1 on
Line 9.

The value of x can be incremented by any value; for example, if you want to loop through from 0 to
25 in steps of 5 you would do this:

1 # increment by 5

2 5

x = [1a

. - —_> 15

4 while x <= 25: 20

5 print (x) -
X += 5

5 | Structured Programming Page 8 of 14 © ZigZag Education, 2021

We can also use a while loop to check whether a valid input has been entered; this is an
ideal way to ensure that your code is robust.

ROBUST

CODE
Screenshot shown in PyCharm IDE to show line numbers

e def menul):

"""Display menu choice: Enter Player Names, Play Game ,Quit™""

7 menu options =['E', 'P', 'Q']
invalid menu choice = True
print('"'Please choose from the following options:

10 tPress'E' to enter players names'n
11 tPress 'P' to play the game'n
12 tPress 'Q' to quitin''')

13 menu choice = input('>> ').uppexz()

15 while invalid menu choice:

16 if menu choice in menu_options:

17 invalid menu choice = False

18 else:

19 print {'That was not in the menun, \nplease choose E,P or Q to continue')

20 menu_choice = input('>> ').upper/()

22 return menu choice

25 def main():

26 """runs all functions

mew
28 menu choice = menu ()
29 if menu choice == 'E':
print("You have chosen to enter player names")
31 elif menu choice == 'B':
32 print("You have chosen to play the game")
else:

34 print("You have chosen to guit the game")

> X
37 main {) That was not in the menu, .
please choose E,P or Q to continue
>> Y
That was not in the menu,
e OnLine 8, the variable please choose E,P or Q to continue
‘invalid_menu_choice’ is set to True >>q ,
- - You have chosen to quit the game
e Online 15, the while loop will continue >>>

while the value of the variable remains
True. This could also be written as:

o while invalid_menu_choice == True:
e Line 16 checks whether the input is in the list ‘menu_ options’. If that condition evaluates to
True then a valid menu choice has been entered.

e Line 17 then changes the value of the variable ‘invalid_menu_choice’ to False so that the
program will now stop looping through lines 15 to 20.

5 | Structured Programming Page 9 of 14 © ZigZag Education, 2021

'FOR LOOPS

The for loop will loop for a set number of times, which can be a number range, e.g. from 1 to 10, or
items in a sequence, such as a string or a list.

A common way to use a for loop with numbers is to use the range() built-in function. When we use
this built-in function we usually supply the starting number in the range and the number to go up to,
but not include in the range. Look at these examples:

e
0
for % 1in range(6): > 1
print (x) 2
3
4
5
e
e
1
2
3
_ 4
for ® in range(l,11): > |s
print (x)
&
7
a
S
10
e
e
1
for ¥ in range(l,11,2): 3
print (x) > |5
7
S
e

The first example has no starting point for the range of numbers so uses the default of 0 to print out
six numbers from 0 to 5.

In the second example, | have supplied the starting point 1 and the end of the range as 11; this
means up to, BUT not including, the last number.

The third example sets the start and end of the range but also specifies that the numbers must
increase in steps of 2.

5 | Structured Programming Page 10 of 14 © ZigZag Education, 2021

[COUNTING AND TOTALLING WITH FOR LOOPS

We can use the same techniques as counting and totalling with the while loop in a for loop.

1 # counting with a for loop
total = |
5 for i in range(5):

6 total = total + 1
print (" Value of 1 =

WValus of 1 = 0 Total = 0O
Valus of 1 = 1 Total = 1
a Value of 1 = 2 Total = 3
WValue of 1 = 3 Total = &
Walus of 1 = 4 Total = 10
" 4+ str(i) + " Total =" + str(total))

Using the range() method, we already know it will iterate up to, but not including, 5. Line 6 simply

adds the current value of i to the running total.

Another common method of iteration and counting or totalling uses arrays. Look at this example:

1 # counting with a for loop

2 items =
shopping = ["eggs", "milk", "bread", '"cheese", "jam"]
for each in shopping:

& items += 1

7 print ("Number of items in shopping = " + str(items))

The variable ‘each’ is used to iterate through the array ‘shopping’. Each time the FOR loop iterates,

the value of ‘items’ is incremented by 1.

This method can also be used to count the characters in a string. Look at this example:

1 # counting with a for loop

word = "programming"

4 vowels = ['a', 'e', 'i', 'o', 'u']
v_count = C
1 count = C

for letter in word:
1 count += 1
10 if letter in vowels:
i v_count += 1

12 print ("The word has " + str(l count)

The word has 11 letters and 3 vowels

+

letters and " + str(v_count) + " vowels")

5 | Structured Programming

Page 11 of 14

© ZigZag Education, 2021

FOR LOOPS U

SING STRINGS AND LISTS

Sometimes we want to iterate over data structures like a string or a list. We can do this by using a

variable ‘i’ or ‘item’ to iterate over the characters in the string or the elements in the list/array.

word

"programming"

for i in word: |[»>>

print (i)

shopping

item
prin

[1legg51lr 1lr:.l_'_'_]‘_:1lr

A

shopping:
t(item)

n

bread", "cheese", "jam"]

e
eggs

NESTED LOOPS
Sometimes we want to loop through two sets of integers to compare them.

Example 1:

mill
bread
cheese
Jam
=g

Yo og 8 B Rg 0 R

e
5 in both arravs

nums1l [5,3,7,9,15,12]
numsZ = [7,5,9,11,16,8]
for ® in numsl:
for vy in numsZ
1 ox ==y
print("{0} in

7 in both arravys
% in both arrays
B

both arrays".format (=))

This example finds the integers that appear in both lists; although they are not in the same order, we
can identify which are duplicated. We may be writing a program to find duplicate values, so these
can be processed in some way to solve a problem.

Example 2:

Here, x is used to count through the range from 1to 5, y is used to count through the range from 1
to 2. The string format() built-in function has been used to print out a simple times table.

/ \ >>>
@ n range(l,6): M1 w1 =1
Fo: range (1,2) T 2 *1=2
print ("{0} * {1} = {2}".format (x,V,X*Y)) 3 271 = 3
4 * 1 = 4
5 % 1 5

b

5 | Structured P

rogramming

Page 12 of 14 © ZigZag Education, 2021

Example 3:

This example shows how you might run a game loop in a program.

no winner = True
player _go = 1
while no winner: # outer loop
while playsr go == 1: f inner loop
name = input("Please enter your name: ")
cholce = input ("Please enter a vowel {0}: ".format (name))
if choice.uppesr() == "I":
no_winnsr = False
print ("Well done {0}, you hawve won!".format (name))
break
else:

print ("¥You have not won the game, your turn is owver")

rplayer go = 2 ¥ player go variable changed to 2

while playsr go == Z2:

name = input("Please enter your name: ")
choice = input ("Please enter a vowel {0}: ".format (name))
if choice.uppesr() == "I":
no _winnsr = False
print ("Well done {0}, you have won!".format (name))
break
else:

print ("¥You have not won the game, your turn is over")

player go = 1 ¥ player go wvariable changed to 1

print {"Game over")

Screenshot shown in PyCharm IDE to show line numbers

The two conditions that are being checked in each while loop, no_winner and player_go, are set at

the start on lines 4 and 5.

Line 7 —the outer loop continues to check whether no_winner is still true.

Line 8 — the inner while loop to control the turn for each player asks for their name and their
choice. This is then compared with the answer on line 11.

If the choice entered matches the answer then the game has been won.

Line 12 — the variable no_winner is set to false, a message is printed and the ‘break’
command forces the code out of the inner loop.

The condition for the outer loop is no longer true and the code jumps to line 29.

If the choice entered does not match the answer, the ‘else’ part of the selection statement is
executed, a message is printed on line 16 and the player_go variable is changed to 2 on

line 17.

The second inner loop then works in exactly the same way.

5 | Structured Programming Page 13 of 14 © ZigZag Education, 2021

BREAKING OUT OF LOOPS

A break statement will allow us to ‘break’ out of a while loop if a test condition is met. In the
example 3 above this happens if the player correctly guesses the vowel.

Here are two more examples:

Example 1:

for 1 in range(0,10,2):

1T 1 == é:
break T
print (1) 0
2
4
B

This for loop should print from 0 to 8 in steps of 2 but is set to break out of the loop if the iterator ‘'
is equal to 6.

Example 2:

while True:
print ("Hello world!™)
X = 1input (">>> ")
1L X == "x": >z
' ke Hello world!
print ("You entered 'x'!") |»*>
Hello world!
>
Hello world!
»>> X
You entered 'x'!

a

AL

In this example, the use of TRUE in the while loop means that until the input meets the criteria to
break out of the loop, the program will continue to ask for an input. In the example above, no input
was entered apart from hitting the ENTER key.

EXERCISE 09: WHILE AND FOR LOOPS

1. Write a program, using at least two functions AND parameter passing, which will allow the
user to input a number between 1 and 12 and print the times table for that number.

2. Write a program, using at least 2 functions AND parameter passing, that will add together a
series of numbers until the user enters 0. The program will then display the total.

5 | Structured Programming Page 14 of 14 © ZigZag Education, 2021

	5. Structured Programming
	5.1 Sequence
	Relational Operators
	LOGICAL OPERATORS

	5.2 Selection
	5.3 Iteration
	While Loops
	Counting and Totalling with a while loop
	For Loops
	Counting and Totalling with For Loops

