
5 | Structured Programming Page 1 of 14 © ZigZag Education, 2021

When you create your own programs, it is important to structure them so that they are:

1. Easy to read

2. Easy to understand

3. Easy to maintain

Programming problems are easier to solve by breaking them down into a series of smaller steps

which are easier to understand and solve. The total solution is created when all the smaller sub-

problems have been solved.

The three constructs that we use in structured programming are:

1. Sequence

2. Selection

3. Iteration

In structured programming, the SEQUENCE in which instructions are executed is the same order as

they appear in the code:

When trying to solve problems we can also represent them using either pseudocode or diagrams:

Flow chart:

Your programs use sequencing when the solution can be

broken down into a series of steps that are processed one

after another.

Pseudocode:

5 | Structured Programming Page 2 of 14 © ZigZag Education, 2021

Operator What it means Example

== Equality operator; checks whether both values are the same

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Operator What it means Example

AND
Logical AND checks whether both
conditions are true or false

OR
Logical OR checks whether EITHER of the
conditions is true

NOT

Logical NOT reverses a Boolean value. In
the example, x > y evaluates to False,
using the logical NOT reverses the
evaluation to true.

Use print statements to find the answers to the following:

1. Calculate the following (True or False)

 a. 23!=15 b. 5+3<10 c. 6 > 10 == 10< 2

2. If a = 3 and b = 8, what are the results of the following statements?

 a. a<b b. 6 >= a c. b > a == False d. True !=(a==b)

3. If c = True and d = False, what are the results of the following statements?

 a. c and d b. not d or c c. c == d and True

5 | Structured Programming Page 3 of 14 © ZigZag Education, 2021

IF STATEMENT

Selection or conditional statements execute a block of code based on the result of some test or

condition we have set in the code. We are testing to see whether the result is TRUE or FALSE and we

can set different actions depending on the result of our test.

Example:

In this example, the test in the first block of code evaluates to true so the print statement is

executed. The test in the second example evaluates to false so the print statement is NOT executed.

 Note: Remember that it is important that your code is correctly indented to avoid syntax errors.

This can be used in simple examples like this, where we are asking for input from the user and

checking this against a present condition in our code:

What happens if I enter a value below 50?

We need the code to be able to deal with BOTH true and false inputs.

5 | Structured Programming Page 4 of 14 © ZigZag Education, 2021

IF ELSE STATEMENT

Using an If Else statement, I can now include a false code block so that something happens if the test

condition does not evaluate to true.

Example:

I may want my code to check several conditions and proceed with the condition which is true. For

example, a different score in the test used above will result in a different grade.

IF/ELIF STATEMENT

The structure of the IF/ELIF statement should follow these rules:

You can test any number of conditions using this method; your code does not have to include an

ELSE but, if it does, it must be the last statement.

5 | Structured Programming Page 5 of 14 © ZigZag Education, 2021

NESTING IF STATEMENTS

We can also use IF/ELIF statements to check sub-conditions in a program:

In this example, condition 1 evaluates to false so the else part of the IF statement is executed.

Condition 2, in the first part of the nested if statement, evaluates to true, as 5 is less than 8, and the

print statement is executed.

1. Complete the program shown in the

flow chart.

2. Write a program which asks for the

names of two football teams playing

against each other and their scores.

Your program should calculate how

many points each team gets (3 for a

win, 1 for a draw, 0 if they lose).

Hint: you will need to declare constants to
use in calculating the points. Remember,
one team will be the HOME team, the other
the AWAY team.

5 | Structured Programming Page 6 of 14 © ZigZag Education, 2021

In programming, iteration means repeating instructions or processes over and over again. This is

more commonly known as ‘looping’.

Example:

If you do not hit the mole within a certain time limit, the game is over.

In Python, there are two types of loop that can be used, a FOR loop and a WHILE loop.

While loops are also known as conditional loops as they will continue to iterate or loop until a

condition, which you have set in your code, is met. It is important to make sure that you have

written code that will allow your loop to finish and avoid an infinite loop.

Example:

Whack the

mole

Increase score

Another mole

pops up

5 | Structured Programming Page 7 of 14 © ZigZag Education, 2021

If the value of the variable ‘number’ is not incremented by 1 each time the loop iterates, the

condition to exit the loop will never be reached as ‘number’ will always be less than 10.

I can also check a condition entered by a user:

As you can see, the loop continues until the condition is met, and the final print statement is then

executed. Remember that use of the .lower() built-in function changes my capital letter Y into lower-

case y.

We can use a while loop to iterate (loop) and count up (increment) or count down (decrement) until

a preset condition is true or false.

Example:

It is important to set the initial value of ‘i' on Line 3. The preset condition for exiting the while loop is

then set on Line 4 with the incrementing value of i set on Line 6 with Line 5 printing out the resulting

5 times table.

5 | Structured Programming Page 8 of 14 © ZigZag Education, 2021

Example 2:

In this example of a countdown, the initial value of x, on Line 3, must be greater than 0 as we are

counting down from 10. The condition for exiting the while loop is set on Line 4 and the value of x is

concatenated into a print statement on Line 5.

An additional check on Line 6 checks when the count has reached 0 for an extra print statement and

the value of x is decremented on Line 8.

Example 3:

In this example, the while loop counts from 0 to 10; look at Line 6. In Line 7, the value of x is added

to the running total and the results are printed on Line 8. The value of x is then incremented by 1 on

Line 9.

The value of x can be incremented by any value; for example, if you want to loop through from 0 to

25 in steps of 5 you would do this:

5 | Structured Programming Page 9 of 14 © ZigZag Education, 2021

We can also use a while loop to check whether a valid input has been entered; this is an

ideal way to ensure that your code is robust.

Screenshot shown in PyCharm IDE to show line numbers

 On Line 8, the variable

‘invalid_menu_choice’ is set to True

 On line 15, the while loop will continue

while the value of the variable remains

True. This could also be written as:

o while invalid_menu_choice == True:

 Line 16 checks whether the input is in the list ‘menu_ options’. If that condition evaluates to

True then a valid menu choice has been entered.

 Line 17 then changes the value of the variable ‘invalid_menu_choice’ to False so that the

program will now stop looping through lines 15 to 20.

5 | Structured Programming Page 10 of 14 © ZigZag Education, 2021

The for loop will loop for a set number of times, which can be a number range, e.g. from 1 to 10, or

items in a sequence, such as a string or a list.

A common way to use a for loop with numbers is to use the range() built-in function. When we use

this built-in function we usually supply the starting number in the range and the number to go up to,

but not include in the range. Look at these examples:

The first example has no starting point for the range of numbers so uses the default of 0 to print out

six numbers from 0 to 5.

In the second example, I have supplied the starting point 1 and the end of the range as 11; this

means up to, BUT not including, the last number.

The third example sets the start and end of the range but also specifies that the numbers must

increase in steps of 2.

5 | Structured Programming Page 11 of 14 © ZigZag Education, 2021

 We can use the same techniques as counting and totalling with the while loop in a for loop.

Using the range() method, we already know it will iterate up to, but not including, 5. Line 6 simply

adds the current value of i to the running total.

Another common method of iteration and counting or totalling uses arrays. Look at this example:

The variable ‘each’ is used to iterate through the array ‘shopping’. Each time the FOR loop iterates,

the value of ‘items’ is incremented by 1.

This method can also be used to count the characters in a string. Look at this example:

5 | Structured Programming Page 12 of 14 © ZigZag Education, 2021

FOR LOOPS USING STRINGS AND LISTS

Sometimes we want to iterate over data structures like a string or a list. We can do this by using a

variable ‘i’ or ‘item’ to iterate over the characters in the string or the elements in the list/array.

NESTED LOOPS

Sometimes we want to loop through two sets of integers to compare them.

Example 1:

This example finds the integers that appear in both lists; although they are not in the same order, we

can identify which are duplicated. We may be writing a program to find duplicate values, so these

can be processed in some way to solve a problem.

Example 2:

Here, x is used to count through the range from 1 to 5, y is used to count through the range from 1

to 2. The string format() built-in function has been used to print out a simple times table.

5 | Structured Programming Page 13 of 14 © ZigZag Education, 2021

Example 3:

This example shows how you might run a game loop in a program.

Screenshot shown in PyCharm IDE to show line numbers

The two conditions that are being checked in each while loop, no_winner and player_go, are set at

the start on lines 4 and 5.

 Line 7 – the outer loop continues to check whether no_winner is still true.

 Line 8 – the inner while loop to control the turn for each player asks for their name and their

choice. This is then compared with the answer on line 11.

 If the choice entered matches the answer then the game has been won.

 Line 12 – the variable no_winner is set to false, a message is printed and the ‘break’

command forces the code out of the inner loop.

 The condition for the outer loop is no longer true and the code jumps to line 29.

 If the choice entered does not match the answer, the ‘else’ part of the selection statement is

executed, a message is printed on line 16 and the player_go variable is changed to 2 on

line 17.

 The second inner loop then works in exactly the same way.

5 | Structured Programming Page 14 of 14 © ZigZag Education, 2021

BREAKING OUT OF LOOPS

A break statement will allow us to ‘break’ out of a while loop if a test condition is met. In the

example 3 above this happens if the player correctly guesses the vowel.

Here are two more examples:

Example 1:

This for loop should print from 0 to 8 in steps of 2 but is set to break out of the loop if the iterator ‘i’

is equal to 6.

Example 2:

In this example, the use of TRUE in the while loop means that until the input meets the criteria to

break out of the loop, the program will continue to ask for an input. In the example above, no input

was entered apart from hitting the ENTER key.

1. Write a program, using at least two functions AND parameter passing, which will allow the

user to input a number between 1 and 12 and print the times table for that number.

2. Write a program, using at least 2 functions AND parameter passing, that will add together a

series of numbers until the user enters 0. The program will then display the total.

	5. Structured Programming
	5.1 Sequence
	Relational Operators
	LOGICAL OPERATORS

	5.2 Selection
	5.3 Iteration
	While Loops
	Counting and Totalling with a while loop
	For Loops
	Counting and Totalling with For Loops

