
3 | Data Types Page 1 of 8 © ZigZag Education, 2021

3. DATA TYPES

The data types you will be using are predefined in the Python programming language. Choosing the

correct data type to use is important because it determines what actions we can perform on the

data, e.g. we cannot divide a text string by an integer. Every value you store will have one of the

following data types:

STRING

 A string is a series of characters, in quotes. These can be single or double quotes.

 We can add them together, e.g. “birth” + “day” would give you “birthday”.

 Used to represent pseudo-numbers, e.g. a telephone number.

INTEGER

 An Integer is a whole number; it can be positive or negative.

 We can use a range of mathematical operators (+ - * / etc.) on integers.

REAL

 This enables us to store a number with a fractional part.

 A real number is sometimes called a float or single or double.

BOOLEAN

 A Boolean value can be True or False.

 Many questions have the answer ‘Yes’ or ‘No’.

 We want to find out whether things are true or not in our programs.

I can check what data type a variable is by using:

type (variable_name).

Why is this important?

You might use this to ensure that the result of a

calculation is shown as a decimal as this may affect the

rest of your program and give a false result.

You may want to compare values which are not the same data type, e.g. your program takes input as

a string and then needs to be converted to an integer to check whether the value is greater than or

less than a numeric value.

Look at this example, which causes a Type Error when the code is executed in the interpreter:

3 | Data Types Page 2 of 8 © ZigZag Education, 2021

3.1 CASTING DATA TYPES

Python assumes that all data entered using the input() built-function is a STRING unless the data

type is CAST into a different data type. This means telling Python to treat the data input as an

INTEGER or a FLOAT.

In the improved version, the data input is CAST to an INTEGER when the input is requested. This

could also be done like this:

The example below is more efficient as only one line of code has been used to cast the

data type rather than two lines of code as shown above.

Efficient Code:

More examples of casting data types:

Used to show the data type has

changed.

3 | Data Types Page 3 of 8 © ZigZag Education, 2021

3.2 GETTING DATA INPUT

We have already seen examples of the built-in function input() being used to get data from a user.

The efficient code example above shows how the input from the user can be CAST into the correct

data type by putting the input() code inside a data type.

3.3 STRINGS

As already mentioned in Data Types, strings are sequences of characters enclosed by speech marks.

They can be enclosed by single quotes, double quotes or three quotes of either type. As you can see,

the output from each version is the same.

Which one should I use?

 Using single quotes means that you need to use escape characters in the string if you also

want to use characters like a backslash, an apostrophe or double quotes.

 Using double quotes means that you do not need to use escape characters.

Using triple quotes means that text can span several lines, although these are generally used for

docstrings in functions; see Docstring and Comments for more information.

3 | Data Types Page 4 of 8 © ZigZag Education, 2021

Escape Characters

Some useful escape characters are shown below.

Escape Character What it does

\\ Allows the use of a backslash inside a single quotes string

\’ Allows the use of an apostrophe inside a single quotes string

\” Allows the use of double quotes inside a single quotes string

\n ASCII linefeed-newline

\t Horizontal tab (indents your text string)

Examples:

3 | Data Types Page 5 of 8 © ZigZag Education, 2021

STRING OPERATIONS

Strings are immutable; this means that once we have created a string variable we cannot alter it or edit it.

There are a number of string operations we can perform on a string variable that will be useful when

writing your code. Here are some common examples:

 len (myString) – returns the number of characters in the string, including spaces.

 myString.upper() – returns the string in upper case.

 myString.lower() – returns the string in lower case.

 myString.capitalize() – returns the string with the first letter of the string capitalised.

 myString.title() – returns the string with the first letter of each word capitalised.

 myString.replace(x, y) – returns the string with the characters represented by x replaced by
the characters represented by y.

 myString [x: y] – returns the a substring of the original string starting at character x and
ending before character y.

Examples of use:

Why is this important?

Look at this example; I am trying to test whether the two strings are the same by using the equality

operator.

If I test equality WITHOUT converting the first string to upper case, the result of the comparison is

false; Python does not recognise that the strings are the same.

3 | Data Types Page 6 of 8 © ZigZag Education, 2021

FORMATTING STRINGS

When we need to use variables inside a print statement there are a number of different ways we can

do this:

1. Use a comma to add the variable into the print statement.

2. Concatenate the string with the variable inside the print statement.

3. Use the string method .format().

The last method may seem more time-consuming than the first two, but it allows a lot more

flexibility.

Example:

String alignment tricks:

Character Alignment

< left alignment

^ centre alignment

> right alignment

We can also use additional ‘control characters’ to improve the way any variable types are printed.

3 | Data Types Page 7 of 8 © ZigZag Education, 2021

The code in this screenshot has been created in script mode. This means it can be saved and run by

pressing F5; the filename must have the file extension .py.

USING ORD() AND CHR()

These two built-in functions are commonly used

when creating a simple Caesar Cipher program

to encrypt a text string.

A Caesar Cipher simply substitutes the actual

character in the string with another letter a

certain number of spaces further on in the

alphabet.

The ord() function allows us to represent each letter as an ordinal

number. We can then add the required number of letters to shift

by, which must be between 1 and 26, to find the value of the new

number. The new number can be changed back to a letter by using

the chr() function.

The numbers used to represent each upper or lower case letter in

the alphabet are based on the ASCII character set. Computers only

understand binary, so the ASCII codes represent text and other

punctuation symbols. The diagram shows some of the letters and

their numerical representations in binary, octal, decimal and

hexadecimal.1

1 Binary is Base 2, Octal is Base 8, Decimal is Base 10, Hexadecimal is Base 16

3 | Data Types Page 8 of 8 © ZigZag Education, 2021

Example:

This simple example shows how we can use these two built-in functions to write a basic Caesar

Cipher. The key is 7 and z is 7 letters away from s in the alphabet.

EXERCISE 03: STRINGS

Complete these exercises in script mode in IDLE.

1. Prompt the user to enter their name. Output a message: ‘Hello (name), I hope you are well’;

the message should be output on two lines using one print statement.

2. Prompt the user to enter two whole numbers. Output a message ‘The average of your two

numbers, (number 1) and (number 2) is (average)’.

3. Prompt the user to enter a string for encryption and a key value between 1 and 26. Output

the original string and the encrypted string with a suitable message.

	3. Data Types
	3.1 Casting data types
	3.2 Getting data input
	3.3 Strings
	String Operations
	Formatting Strings
	Using ORD() and CHR()

